• 제목/요약/키워드: Li metal battery

검색결과 122건 처리시간 0.025초

공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교 (Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres)

  • 최웅희;박세련;강찬형
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구 (Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode)

  • 진다희;박주남;;윤별희;유명현;이용민
    • 전기화학회지
    • /
    • 제22권2호
    • /
    • pp.69-78
    • /
    • 2019
  • 리튬 금속 음극은 낮은 환원 전위, 고에너지 밀도로 인해 흑연을 대체할 차세대 음극재로 재조명 받고 있다. 하지만, 충방전시 리튬 금속 표면에서의 반복적인 산화/환원 반응에 의해 리튬 덴드라이트가 형성되며 이로 인해 수명특성이 급격하게 저하되고 더 나아가 내부 단락(Internal Short-circuit)과 같은 안전성 문제로 인해 상용화되기에는 어려운 실정이다. 이를 해결하기 위해 본 연구 그룹에서는 리튬 금속에 미세 패턴을 형성하여 전류 밀도를 제어함으로써 덴드라이트 형성을 제어하였으나, 고전류밀도에서는 리튬 덴드라이트의 형성을 완벽하게 제어할 수는 없었다. 본 연구에서는 미세 패턴화된 리튬 금속 전극에 전해질 첨가제 Vinylene Carbonate(VC)를 도입하여 고율 충방전 시 미세 패턴화된 리튬 금속 전극의 덴드라이트 형성 억제를 극대화하고자 하였다. 미세 패턴화된 리튬 금속 전극과 VC 첨가제의 시너지 효과로 인해 높은 전류 밀도에서의 리튬 덴드라이트가 비교적 치밀하게 형성되는 것을 확인할 수 있었다. 이로 인해 300사이클 동안 88.3%의 용량유지율을 보였으며, 기존의 미세 패턴화된 리튬 금속 전극에 대비하여 수명특성이 약 6배 이상 향상된 것을 확인할 수 있었다.

폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출 (Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid)

  • 손성호;김진화;김현종;김선정;이만승
    • 자원리싸이클링
    • /
    • 제23권4호
    • /
    • pp.21-29
    • /
    • 2014
  • 폐리튬이온전지 NCM($Li(Ni_xCo_yMn_z)O_2$)양극활물질 내에는 코발트(15 ~ 20%), 니켈(25 ~ 30%), Mn(10 ~ 15%) 및 리튬(5 ~ 10%) 등의 유가금속이 존재한다. 본 연구에서는 폐리튬이온전지 NCM 양극활물질로부터 친환경 유기산인 말릭산을 이용한 유가금속 침출 공정을 연구하였다. 주요공정인자는 말릭산 농도, 과산화수소 농도, 고액비, 반응온도 등이었으며, 침출액 내 금속농도는 ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer)를 통해 분석하였다. 환원제($H_2O_2$) 첨가로 인해 유가금속의 침출율이 상승하는 효과를 얻었으며, 최적공정인자는 말릭산 2 M, 과산화수소 5 vol.%, 고액비(solid/liquid ratio) 5 wt.%, 반응온도 $80^{\circ}C$이었으며, 침출율은 코발트 99.10%, 니켈 99.80%, 리튬 99.75%이었다.

리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 - (Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material -)

  • 이진식;이철태
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.774-780
    • /
    • 1998
  • 스피넬 구조인 $LiMn_2O_4$의 안정성을 향상시키기 위해서 망간과 비슷한 이온반경을 갖는 여러 가지 금속원소, Mg, Fe, V, W, Cr, Mo들을 일부 치환하였으며 ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$), 이 결과 $LiM_xMn_{2-x}O_4$ 정극은 정극물질로 사용할 경우 $LiMn_2O_4$보다 낮은 용량감소를 나타냈다. 그리고 화학확산계수의 측정 결과 $LiMg_{0.05}Mn_{1.9}O_4$$LiCr_{0.1}Mn_{1.9}O_4$의 화학확산계수는 $LiMn_2O_4$보다 약 10배 이상 크게 나타났다. 이러한 결과를 볼 때 $LiMn_2O_4$에 여러 가지 금속원소를 치환시킴으로 구조적인 안정화로 인한 전기화학적 성능을 향상시킬 수 있었다.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • 전기화학회지
    • /
    • 제11권2호
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향 (Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries)

  • 임채남;안태영;유혜련;하상현;여재성;조장현;윤현기
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • 강용묵
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • 김도훈;정유덕;김상필;심운보
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권11호
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.

차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계 (A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research)

  • 이민규;이동현;한재웅;정진오;최현빈;이현태;임민홍;이홍경
    • 전기화학회지
    • /
    • 제24권3호
    • /
    • pp.65-75
    • /
    • 2021
  • 코인형 전지는 리튬 이차 전지 연구의 주요 평가 플랫폼으로써 새로운 소재 및 개념을 발굴하고 차세대 전지의 기초 연구에도 큰 기여를 하고 있다. 리튬 금속 전지는 500 Wh kg-1 이상의 에너지 밀도를 구현할 수 있어 유망한 차세대 리튬 이차 전지 후보군으로 고려되고 있으나, 덴드라이트 형태의 리튬 전착과 함께 극심한 부피 변화 및 표면적 증가라는 성능 열화에 매우 취약하다. 특히, 리튬 금속 전지의 수명은 전해질 양, 리튬 두께, 내부 압력 등과 같은 전지 설계 및 구조에 매우 의존하기 때문에 코인셀 수준에서의 성능 평가 및 신뢰성에 치명적이다. 따라서, 기존 코인셀 구조를 개선한 리튬 금속 음극 특화 전지 설계 및 규격화가 요구된다. 본 연구에서는 상용수준에서의 주요 전지 설계 인자인 극소량의 전해질과 높은 양극 로딩 레벨, 박막 리튬 사용 등의 환경에서 성능 및 재현성을 확보한 코인셀 구조를 제안한다. 양극과 음극의 면적비를 1에 근접하게 제어하여 비활성 공간을 최소화하고 용량 저하현상을 완화시켰다. 또한, 코인셀 내 압력을 정량화하여 압력의 균일성이 중요한 인자임을 규명하고 유연성 고분자 (PDMS) 필름 도입과 내부 부품의 변화를 통해 기존보다 높고 (0.6 MPa → 2.13 MPa) 균일한 압력(표준편차: 0.43 → 0.16)이 가하도록 개조하였다. 이를 통해 최적의 설계를 정립을 통해 기존보다 향상된 재현성을 확인하였다.