• Title/Summary/Keyword: Li Recovery

Search Result 230, Processing Time 0.028 seconds

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

A review on Separation Technologies for Lithium Recovery from Waste Solutions in Recycling Process of Waste Battery (폐배터리 재활용 공정 폐액 중 리튬 회수를 위한 분리 기술 고찰)

  • Song, Daesung;Kim, Eunkyu;Vu, Thang-Toan
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.473-477
    • /
    • 2022
  • In this study, candidate technologies for lithium recovery from the process waste liquid generated in the waste battery recycling process were reviewed, and technologies applicable to the process from the commercialization point of view were reviewed from a qualitative point of view. The evaporation method is difficult to apply because it requires a large-scale land and shows a low recovery rate due to the loss of Li during the concentration process. In the case of precipitation, a commercially available technology shows a high recovery rate due to the high Li/Na selectivity of phosphoric acid, but there are disadvantages in that the process is complicated due to the use of expensive phosphoric acid, requiring a recovery step, and continuous operation is impossible because solids are handled in the Li concentration process. In the case of solvent extraction, if we find an inexpensive extractant with high Li/Na selectivity, continuous operation is possible with the method used in extraction of other metals in the previous step, and when Li is concentrated, continuous operation is possible because it is in a liquid state. If it shows a similar recovery rate compared to precipitation technology, commercialization will be the most likely.

Recovery of Residual LiCl-KCl Eutectic Salts in Radioactive Rare Earth Precipitates (방사성 희토류 침전물내 잔류하는 LiCl-KCl 공융염의 회수)

  • Eun, Hee-Chul;Yang, Hee-Chul;Kim, In-Tae;Lee, Han-Soo;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.303-309
    • /
    • 2010
  • For the pyrochemical process of spent nuclear fuels, recovery of LiCl-KCl eutectic salts is needed to reduce radioactive waste volume and to recycle resource materials. This paper is about recovery of residual LiCl-KCl eutectic salts in radioactive rare earth precipitates (rare earth oxychlorides or oxides) by using a vacuum distillation process. In the vacuum distillation test apparatus, the salts in the rare earth precipitates were vaporized and were separated effectively. The separated salts were deposited in three positions of the vacuum distillation test apparatus or were collected in the filter and it is difficult to recover them. To resolve the problem, a vacuum distillation and condensation system, which is subjected to the force of a temperature gradient at a reduced pressure, was developed. In a preliminary test of the vacuum distillation/condensation recovery system, it was confirmed that it was possible to condense the vaporized salts only in the salt collector and to recover the condensed salts from the salt collector easily.

The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy (중간가공열처리한 AI-Li계 합금의 고온변형거동)

  • Yoo, C.Y.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

A STUDY ON THE RECOVERY OF LITHIUM AND Ni/Co OXIDE FROM CATHODE ACTIVE POWDER OF END-OF-LIFE NCA(LiNiCoAlO2) BATTERY

  • SHUN-MYUNG SHIN;DONG-JU SHIN;SUNG-HO JOO;JEI-PIL WANG
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.481-485
    • /
    • 2019
  • This study was attempted to study for recovery of Li as Li2CO3 from cathode active material, especially NCA (LiNiCoAlO2), recovered from spent lithium ion batteries. This consists of two major processes, carbonation using CO2 and water leaching. Carbonation using CO2 was performed at 600℃, 700℃ and 800℃, and NCA (LiNiCoAlO2) was phase-separated into Li2CO3, NiO and CoO. The water leaching process using the differences in solubility was performed to obtain the optimum conditions by using the washing time and the ratio of the sample to the distilled water as variables. As a result, NCA (LiNiCoAlO2) was phase-separated into Li2CO3 and NiO, CoO at 700℃, and Li2CO3 in water was recovered through vacuum filtration after 1 hour at a 1:30 weight ratio of the powder and distilled water. Finally, Li2CO3 containing Li of more than 98 wt.% was recovered.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

Semi-Continuous Electrowinning of LiCl-$Li_2O$ Molten Salt (LiCl-$Li_2O$ 용융염에서의 리튬의 반연속적 전기정련)

  • Jin-Mok, Hur;Chung-Seok, Seo;Sun-Seok, Hong;Dae-Seung, Kang;Seong-Won, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • A Li recovery technology has been developed and related experimental verification efforts were carried out to improve the economical viability and environmental friendliness of the 'Advanced Spent Fuel Conditioning Process' being developed at KAERI. This technology is characterized by the combination of 1) the electrolysis of $Li_2O$ in a molten salt by using a porous non-conducting magnesia container at the cathode, 2) the separation of the Li in the container from the molten salt by elevating the container above the level of a molten salt, 3) the transport of the Li in the container by using a vacuum siphon to a separated reservoir. Li was semi-continuously recovered from a LiCl-$Li_2O$ molten salt with a more than 95% yield by using the developed technology.

  • PDF

Effects of Soy Isoflavone Intake on Urinary and Fecal Isoflavone Excretion in Rats

  • Nam, Hae-Kyung;Kim, Sun-Hee
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • This study was undertaken to determine the bioavailability of isoflavones in weanling Sprague-Dawley rats by providing diets containing different levels of soy isoflavones for 6 weeks: 0.025% (low isoflavone intake; LI), 0.125% (medium isoflavone intake; MI), and 0.25% (high isoflavone intake; HI). The subsequent fecal and urinary excretion of daidzein and genistein was then measured. As the levels of dietary isoflavones increased, the amount of food intakes significantly decreased, and weight gain was slower in female rats. In male rats, there was no significant difference in weight gains related to dietary intakes. Urinary excretion of daidzein and genistein was significantly higher in the MI and HI groups in both male and female rats than the control and LI groups. The recovery % of daidzein and genistein in the urine was significantly lower in the MI and HI groups. Fecal daidzein increased as dietary isoflavone intakes increased in female rats; however, in male rats the increase was significant only in the HI group. The recovery % of daidzein and genistein in the feces of female rats was not significantly different among the four groups. When dietary isoflavones were increased from 0.025% to 0.25%, the amounts of daidzein and genistein excreted in the urine and feces increased; however, the low recovery rate of both daidzein and genistein in the urine implies an increased bioavailability of isoflavones. We also observed sex-related differences in the urinary and fecal recovery of isoflavone intakes.