• 제목/요약/키워드: Li’

검색결과 49건 처리시간 0.024초

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

UAS, CRP 및 지상 LiDAR 융합기반 와형석조여래불의 3차원 재현과 고증 연구 (A Study on the 3D Reconstruction and Historical Evidence of Recumbent Buddha Based on Fusion of UAS, CRP and Terrestrial LiDAR)

  • 오성종;이용창
    • 지적과 국토정보
    • /
    • 제51권1호
    • /
    • pp.111-124
    • /
    • 2021
  • 최근, 2019년 4월 15일에 있었던 노트르담 대성당 화재로 문화재 복원 및 재현에 대해 2008년 숭례문 화재사건 이후 관심이 다시 한 번 집중되고 있다. 특히, 기존에 활용되던 LiDAR 및 광파기 측량 등을 활용한 문화재 실측을 다양한 3차원 재현 기술을 활용하여 복원 및 재현하려는 연구가 활발히 진행되고 있다. 본 연구는 운주사의 와형석조여래불을 대상으로 최근 4차 산업혁명 시대에서 핵심기술로 자리매김한 UAV(Unmanned Aerial Vehicle)의 무인항공영상와 기존에 사진측량에 활용되던 근접영상(CRP) 및 지상 LiDAR 스캐닝을 활용하여 데이터를 획득하고, 이들을 3가지 융합모델로 SfM기반의 3차원 재현을 실시, 모델의 재현도 및 정확도를 비교·분석하였다. 아울러, 3가지의 모델 중 가장 우수한 융합모델을 활용하여 11세기 초 고려시대의 불교 천문학적 고증이 녹아있는 와형석조여래불을 실세계 좌표기반으로 북극성과의 연관성을 확인한다. 본 연구를 통해 문화재의 단순한 외형적인 3차원 재현뿐 아니라 문화재에 담긴 역사적 고증을 확인함으로써 문화재의 종류 및 형태에 따라 고증까지 함께 재현하는 방안을 모색하였다.

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

LiDAR 측량 기반의 지형자료와 기상 데이터 관측시스템을 이용한 태양광 발전량 분석 (The analysis of Photovoltaic Power using Terrain Data based on LiDAR Surveying and Weather Data Measurement System)

  • 이근상;이종조
    • 지적과 국토정보
    • /
    • 제49권1호
    • /
    • pp.17-27
    • /
    • 2019
  • 본 연구에서는 LiDAR 측량을 활용하여 취득한 정밀 지형자료와 센서 기반의 기상데이터 관측시스템을 구축하여 태양광 발전량을 예측하는 연구를 수행하였다. 2018년 평균 일조시간은 4.53 시간으로 나타났으며, 태양광 발전량은 2,305 MWh으로 분석되었다. 그리고 태양광 모듈의 설치각도에 따른 태양광 발전량의 영향을 분석하고자 모듈 설치각도를 $10^{\circ}$ 간격으로 배치한 결과, 모듈 배치 각도 $30^{\circ}$에서 발전시간은 4.24 시간으로 나타났으며, 일 발전량과 월 발전량이 각각 3.37 MWh와 102.47 MWh로 가장 높게 평가되었다. 따라서 모듈 배치 각도를 $30^{\circ}$로 설계시 모듈 각도 $50^{\circ}$에 비해 발전효율이 약 4.8% 상승하는 것을 알 수 있었다. 또한 태양광 모듈의 설치각도에 따른 계절별 태양광 발전량의 영향을 분석한 결과, 날씨가 차가운 11월~2월까지는 모듈 각도가 큰 $40^{\circ}{\sim}50^{\circ}$가 태양광 발전량이 높게 나타났으며 날씨가 따뜻한 3월~10월까지는 모듈 각도가 작은 $10^{\circ}{\sim}30^{\circ}$가 태양광 발전량이 높게 나타남을 알 수 있었다.

A method of X-ray source spectrum estimation from transmission measurements based on compressed sensing

  • Liu, Bin;Yang, Hongrun;Lv, Huanwen;Li, Lan;Gao, Xilong;Zhu, Jianping;Jing, Futing
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1495-1502
    • /
    • 2020
  • A new method of X-ray source spectrum estimation based on compressed sensing is proposed in this paper. The algorithm K-SVD is applied for sparse representation. Nonnegative constraints are added by modifying the L1 reconstruction algorithm proposed by Rosset and Zhu. The estimation method is demonstrated on simulated spectra typical of mammography and CT. X-ray spectra are simulated with the Monte Carlo code Geant4. The proposed method is successfully applied to highly ill conditioned and under determined estimation problems with a good performance of suppressing noises. Results with acceptable accuracies (MSE < 5%) can be obtained with 10% Gaussian white noises added to the simulated experimental data. The biggest difference between the proposed method and the existing methods is that multiple prior knowledge of X-ray spectra can be included in one dictionary, which is meaningful for obtaining the true X-ray spectrum from the measurements.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis

  • Li, Wanhong;Yue, Xiangpeng;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.629-636
    • /
    • 2019
  • Objective: The study was designed to determine the cytotoxic effect of gallic acid (GA), obtained by the hydrolysis of tannins, on mice TM4 Sertoli cells apoptosis. Methods: In the present study, non-tumorigenic mice TM4 Sertoli cells were treated with different concentrations of GA for 24 h. After treatment, cell viability was evaluated using WST-1, mitochondrial dysfunction, cells apoptosis and necrosis was detected using JC-1, Hoechst 33342 and propidium iodide staining. The expression levels of Cyclin B1, proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (BAX), and Caspase-3 were also detected by quantitative real-time polymerase chain reaction and Western-blotting. Results: The results showed that 20 to $400{\mu}M$ GA inhibited viability of TM4 Sertoli cells in a dose-dependent manner. Treatment with $400{\mu}M$ GA significantly inhibited PCNA and Cyclin B1 expression, however up-regulated BAX and Caspase-3 expression, caused mitochondrial membrane depolarization, activated Caspase-3, and induced DNA damage, thus, markedly increased the numbers of dead cells. Conclusion: Our findings showed that GA could disrupt mitochondrial function and caused TM4 cells to undergo apoptosis and necrosis.

Adsorption Behavior and Mechanism of Tripolyphosphate on Synthetic Goethite

  • Zhong, Yong;Sheng, Dandan;Xie, Fazhi;Li, Guolian;Li, Hui;Han, Xuan;Xie, Wenjie;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.146-152
    • /
    • 2019
  • In order to study the transport behavior of tripolyphosphate (TPP) in aqueous solutions, the adsorption process of TPP on synthetic goethite, which exists stably in supergene environment, has been systematically studied. The adsorption properties under different conditions (pH, electrolyte presence, and temperature) were investigated. The adsorption of TPP in the presence of humic acid (HA)/fulvic acid (FA) has also been discussed in this paper. The results indicated that the adsorption capacity quickly increased within the first hour and equilibrium was reached within 24 h. The adsorption capacity decreased from 1.98 to 0.27 mg·g-1 upon increasing the pH from 8.5 to 11.0, whereas the adsorption of TPP on goethite hardly changed with increasing electrolyte concentration. The results of analysis of the kinetic and isothermal models showed that the adsorption was more in accord with the pseudo second-order equation and Freundlich model. The adsorption capacity decreased obviously regardless of the order of addition of TPP, HA, and goethite. Subsequent addition of FA led to a large increase in the adsorption capacity, which might be attributed to the adsorption ability of FA. According to the predictions of the kinetic and isothermal models and the spectroscopic evidence (X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM)), the adsorption mechanism may be mainly based on surface complexation and physical adsorption.

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.

InSAR-based Glacier Velocity Mapping in the Parlung Zangbo River Basin, Tibetan Plateau, China

  • Ke, Chang-Qing;Lee, Hoonyol;Li, Lan-Yu
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.15-28
    • /
    • 2019
  • By applying the method of SAR interferometry to X-band synthetic aperture radar (SAR) image of COSMO-SkyMed, detailed motion patterns of five glaciers in the Parlung Zangbo River basin, Tibetan Plateau, in January 2010 have been derived. The results indicate that flow patterns are generally constrained by the valley geometry and terrain complexity. The maximum of $123.9ma^{-1}$ is observed on glacier No.1 and the minimum of $39.4ma^{-1}$ is found on glacier No.3. The mean values of five glaciers are between 22.9 and $98.2ma^{-1}$. Glaciers No.1, No.2, No.4 and No.5 exhibit high velocities in their upper sections with big slope and low velocities in the lower sections. A moraine lake accelerates the speed of mass exchange leading to a fast flow at the terminal of glacier No.3. These glaciers generally move along the direction of decreased elevation and present a macroscopic illustration of the motion from the northwest to the southeast. The accuracy of DEM and registration conditions of DEM-simulated terrain phases has certain effects on calculations of glacier flow direction and velocity. The error field is relatively fragmented in areas inconsistent with the main flow line of the glaciers, and the shape and uniformity of glacier are directly related to the continuous distribution of flow velocity errors.