• Title/Summary/Keyword: Lewis Number

Search Result 104, Processing Time 0.034 seconds

Self-excitation of Edge Flame (에지화염의 자기 진동)

  • Park, Jeong;Youn, Sung Hwan;Chung, Yong Ho;Lee, Won June;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen (질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The characteristics of lifted laminar propane flames diluted with nitrogen have been investigated experimentally to elucidate self-excitation and the effects of flame curvature. Flame oscillation modes are classified as follows: oscillation induced by heat loss, a combination of oscillations induced by heat loss and buoyancy, and a combination of the oscillations induced by heat loss and diffusive thermal instability. It is shown that the oscillation induced only by heat loss is not relevant to the diffusive thermal instability and hydrodynamic instability caused by buoyancy; this oscillation is observed under all lift-off flame conditions irrespective of the fuel Lewis number. These experimental evidences are displayed through the analysis of the power spectrum for the temporal variation of lift-off height. The possible mechanism of the oscillation induced by heat loss is also discussed.

Numerical Simulations on Nonlinear Behaviors of Diffusional-Thermal Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 확산-전도 불안정의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.695-702
    • /
    • 2002
  • Nonlinear dynamics of striped diffusion flames, by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is numerically investigated by examining various two-dimensional flame-structure solutions. The Lewis numbers for fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed in the model. Particular attention is focused on identifying the flame-stripe solution branches corresponding to each distinct stripe pattern and hysteresis encountered during the transition. At a Damkohler number slightly greater than the extinction Damkohler number, eight-stripe solution first emerges from one dimensional solution. The eight-stripe solution survives Damkohler numbers much smaller than the extinction Damkohler number until the transition to four-stripe solution occurs at the first forward transition Damkohler number. At the second forward transition Damkohler number, somewhat smaller than the first transition Damkohler number, the transition to two-stripe solution occurs. However, anu further transition from two-stripe solution to one-stripe solution is not always possible even if one-stripe solution can be independently accessed for particular initial conditions. The Damkohler number ranges for two-stripe and one-stripe solutions are found to be virtually identical because each stripe is an independent structure if distance between stripes is sufficiently large. By increasing the Damkohler number, the backward transition can be observed. In comparison with the forward transition Damkohler numbers, the corresponding backward transition Damkohler numbers are always much greater, thereby indicating significant hysteresis between the stripe patterns of strained diffusion flames.

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • Vu, Tran Manh;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

Nonformaldehyde Anti-crease Finish of Ramie with Glyoxal (Part I) (글리옥살을 이용한 마직물의 무포름알데히드 방추가공(제 1보)-촉매의 영향)

  • 오경화;홍경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1060-1068
    • /
    • 1998
  • The effects of various catalysts and softners on the anti-crease finish of ramie with glyoxal were investigated. A number of metal salts commonly used as Lewis acid catalysts in DP finishing of cotton with formaldehyde and N-methylol agents were screened for glyoxal treatment of ramie fabric. Various organic and inorganic acids were mixed with Lewis acid catalyst as co-catalysts to improve catalytic activity. As a result, the combination of aluminum sulfate and citric acid was proven highly effective in catalyzing the crosslinking of ramie cellulose by glyoxal under lower curing temperature. With a mixed catalyst, performance properties, such as whiteness and tearing strength as well as wrinkle recovery of treated ramie fabric were improved as compared with that treated with aluminum sulfate alone. Additional improvement of tearing strength and wrinkle recovery was achieved by applying silicons softner in the treatment bath.

  • PDF

Interaction Mode Change According to the Equivalence Ratios in the Interacting Methane and Hydrogen Counterflow Premixed Flames (상호작용하는 대향류 메탄 및 수소 예혼합화염에서 당량비 조건에 따른 상호작용 모드 변화)

  • Park, Ji-Woong;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.13-16
    • /
    • 2012
  • The interaction between methane and hydrogen premixed flames with the different equivalence ratio and global strain rate was investigated numerically in one-dimensional counterflow field. The OPPDIF code and GRI-v3.0 were used to simulate the interacting flames. Overall trends in the maximum heat release rates of $CH_4{^-}$ and $H_2$-side flame were examined with the variation of $a_g$. The interaction mode of the flames were classified according to the equivalence ratios and Lewis numbers of each flame and global strain rate.

  • PDF

On the Extinction Characteristics of the Interacting Lean-Lean Premixed Flames (상호작용을 하는 희박-희박 예혼합화염의 소화특성에 관한 연구)

  • 정석호;김종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.232-240
    • /
    • 1986
  • Extinction characteristics of the two interacting premixed flames are analyzed for the effects of flame stretch and preferential diffusion using large activation energy asymptotic analysis by adopting counterflow system as a model problem. Results show that the flammable limit of the thermally interacting premixed flames is extended compared to the single flame, and the extinction mechanism is classified into weak and strong interactions. As the lewis number of the deficient species increases, the region of strong interaction diminishes which can explain the different characteristics of the extinction boundaries of the lean (rich) methane/air and butane/air flames. The influence of the flame stretch to the interaction boundaries is also studied.

Edge Flame propagation for Twin Premixed Counterflow Slot Burner (대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성)

  • Clayton, David B.;Cha, Min-Suk;Ronney, Paul D.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.60-64
    • /
    • 2006
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_3H_8$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF