• Title/Summary/Keyword: Levitation Magent

Search Result 4, Processing Time 0.021 seconds

Effects of Vertical and Lateral Motion on Levitation Magnet System (상하 및 좌우진동이 부상용 전자석 시스템에 미치는영향)

  • 차귀수;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 1992
  • Magnet core and rail of a magnetically levitated vehicle are usually made of highly conductive materials. Accordingly, eddy currents are induced in those members. Eddy currents often lead to a decrement of levitation and guidance force. This paper has calculated the decrement of both forces due to eddy current generated by magnet's vertical and lateral motion. U-shaped electromagnet and rail were chosen as amodel of 2D finite element analysis. Calculated results proved that both forces dropped significantly at high speed. Consequently, effects of eddy current should be considered in designing the magnet and control system.

  • PDF

The Design of Levitation Magnet for UTM(Urban Transit Maglev)-02 using Maxwell-3D FEM (Maxwell-3D FEM을 이용한 UTM(Urban Transit Maglev)-02 의 부상용 전자석 설계)

  • Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.699-701
    • /
    • 2000
  • It leaves much room for improvement that UTM-01 is of practical use. Therefor we will design of UTM-02 system. The design of new magnet is based on light weight for bogie system. We used Maxwell-3D FEM for design of new magnet. The new magnet for UTM-02 that was reduced weight of magnet. 22kg, then it was increased ratio lift to weight is 9.87.

  • PDF

The Design Simulation of the Levitation Magnet for the Urban Transit Maglev as the Running Vehicle on Curved Line(60mR) (자기부상열차의 곡선주로(60mR) 주행 시를 고려한 부상용 전자석 설계 Simulation)

  • Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.682-684
    • /
    • 2002
  • There is much room for consideration that the magnet design of UTM. When the vehicle runs 60mR curved line on test track, the ratio of cross section area changed to cross the magnet pole and rail. The ratio is reduced about 20% of the total magnet on one bogie. Therefor, magnet current is increased about 3.5A to maintain constant air gap. This paper suggest to margin of the magent design is 1.1 rather than rated levitation force.

  • PDF

An Experimental Study on Magent for Electrop-Magnetic Suspension MagLev Vehicle (II) (상전도(常電導) 흡인식(吸引式) 자기부상열차용(磁氣浮上列車用) 전자석(電磁石)에 대한 실험적(實驗的) 연구(硏究) (II))

  • Kim, Bong-Seop;Chung, Hyun-Kap;Kang, Byung-Kwan;Kang, Man-Sic
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.49-51
    • /
    • 1995
  • This paper deals with the magnet for Urban Transit Maglev-01 (Electro-Magnetic Suspension) which is experimented by the static magnet test bed. The test bed is developed for the hinge style. This paper shows the levitation force vs magnet current and difference of the yoke depth.

  • PDF