• Title/Summary/Keyword: Levenberg-Marquardt Back-Propagation

Search Result 20, Processing Time 0.036 seconds

Design of E-Tongue System using Neural Network (신경회로망을 이용한 휴대용 전자 혀 시스템의 설계)

  • Jung, Young-Chang;Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.149-158
    • /
    • 2005
  • In this paper, we have designed and implemented a portable e-tongue (electronic tongue) system using MACS (multi array chemical sensor) and PDA. The system embedded in PDA has merits such as comfortable user interface and data transfer by internet from on-site to remote computer. MACS was made up 7 electrodes (${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH) and a reference electrode. For learning the system, we adapted the Levenberg-Marquardt algorithm based on the back-propagation, which could iteratively learned the pre-determined standard patterns, in e-tongue system. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. The e-tongue was applied to whiskeys and cognac (one high level whisky, one low level whiskey, two cognac) and 2 sample whiskeys for each standard patterns and unknown patterns. The relationship between the standard patterns and unknown patterns can be easily analyzed.

  • PDF

Human activity classification using Neural Network

  • Sharma, Annapurna;Lee, Young-Dong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.229-232
    • /
    • 2008
  • A Neural network classification of human activity data is presented. The data acquisition system involves a tri-axial accelerometer in wireless sensor network environment. The wireless ad-hoc system has the advantage of small size, convenience for wearability and cost effectiveness. The system can further improve the range of user mobility with the inclusion of ad-hoc environment. The classification is based on the frequencies of the involved activities. The most significant Fast Fourier coefficients, of the acceleration of the body movement, are used for classification of the daily activities like, Rest walk and Run. A supervised learning approach is used. The work presents classification accuracy with the available fast batch training algorithms i.e. Levenberg-Marquardt and Resilient back propagation scheme is used for training and calculation of accuracy.

  • PDF

Design of Portable E-Nose System using Neural Network Algorithm (신경회로망을 이용한 휴대용 E-Nose 시스템 개발)

  • Kim, Jeong-Do;Kim, Dong-Jin;Ham, Yu-Kyung;Hong, Cheol-Ho;Byun, Hyung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.39-42
    • /
    • 2004
  • We have designed a portable electronic nose(e-nose) system using an array of commercial gas sensors for recognition and analyzing the various odours. In this paper, we have implemented a portable e-nose system using an array gas sensors and personal digital assistants(PDA) for recognizing and analyzing volatile organic compounds(VOCs) in the field. Field screening for pollutants has been a target of instrumental development for number of year. A portable e-nose system can be substantial benefit to rapidly localize the spacial extent of a pollution or to find pollutants source. And, by using PDA, E-nose have a better function such as the easy user-interface and data transfer by internet from on- site to remote computer. We adapted the Levenberg-Marquardt algorithm based on the back-propagation and proposed the method that could be predicted concentration levels of VOCs gases after classification by separating neural network into two parts.

  • PDF

Development of Prediction Model for Root Industry Production Process Using Artificial Neural Network (인공신경망을 이용한 뿌리산업 생산공정 예측 모델 개발)

  • Bak, Chanbeom;Son, Hungsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.

A Novel Scheme for detection of Parkinson’s disorder from Hand-eye Co-ordination behavior and DaTscan Images

  • Sivanesan, Ramya;Anwar, Alvia;Talwar, Abhishek;R, Menaka.;R, Karthik.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4367-4385
    • /
    • 2016
  • With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.

PROBLEMS IN INVERSE SCATTERING-ILLPOSEDNESS, RESOLUTION, LOCAL MINIMA, AND UNIQUENESSE

  • Ra, Jung-Woong
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.445-458
    • /
    • 2001
  • The shape and the distribution of material construction of the scatterer may be obtained from its scattered fields by the iterative inversion in the spectral domain. The illposedness, the resolution, and the uniqueness of the inversion are the key problems in the inversion and inter-related. The illposedness is shown to be caused by the evanescent modes which carries and amplifies exponentially the measurement errors in the back-propagation of the measured scattered fields. By filtering out all the evanescent modes in the cost functional defined as the squared difference between the measured and the calculated spatial spectrum of the scattered fields from the iteratively chosen medium parameters of the scatterer, one may regularize the illposedness of the inversion in the expense of the resolution. There exist many local minima of the cost functional for the inversion of the large and the high-contrast scatterer and the hybrid algorithm combining the genetic algorithm and the Levenberg-Marquardt algorithm is shown to find efficiently its global minimum. The resolution of reconstruction obtained by keeping all the propating modes and filtering out the evanescent modes for the regularization becomes 0.5 wavelength. The super resolution may be obtained by keeping the evanescent modes when the measurement error and instance, respectively, are small and near.

  • PDF

Predicting compressive strength of bended cement concrete with ANNs

  • Gazder, Uneb;Al-Amoudi, Omar Saeed Baghabara;Khan, Saad Muhammad Saad;Maslehuddin, Mohammad
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • Predicting the compressive strength of concrete is important to assess the load-carrying capacity of a structure. However, the use of blended cements to accrue the technical, economic and environmental benefits has increased the complexity of prediction models. Artificial Neural Networks (ANNs) have been used for predicting the compressive strength of ordinary Portland cement concrete, i.e., concrete produced without the addition of supplementary cementing materials. In this study, models to predict the compressive strength of blended cement concrete prepared with a natural pozzolan were developed using regression models and single- and 2-phase learning ANNs. Back-propagation (BP), Levenberg-Marquardt (LM) and Conjugate Gradient Descent (CGD) methods were used for training the ANNs. A 2-phase learning algorithm is proposed for the first time in this study for predictive modeling of the compressive strength of blended cement concrete. The output of these predictive models indicates that the use of a 2-phase learning algorithm will provide better results than the linear regression model or the traditional single-phase ANN models.

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).