• Title/Summary/Keyword: Leveling System

Search Result 224, Processing Time 0.027 seconds

Development of an Automatic Leveling Mechanism and Response Properties for the Slope Tractor (경사지 트랙터의 자동 수평기구부 개발 및 응답 특성에 관한 연구)

  • Lee S. S.;Mun J. H.;Lee K. S.;Park W. Y.;Lee C. H.;Hwang H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.1-7
    • /
    • 2005
  • When a slope tractor works on the slope land, it travels usually along the contour and slope line. In that case, the efficiency of work generally decreases and the safety of the operator caused by the overturn of the tractor should be considered. Maintaining the tractor body being horizontal during the travel is crucial to solve problems. To overcome such a problem, an automatic leveling control system for slope tractor has been developed. The system composed of sensor for measuring rolling and pitching inclination of the slope tractor chassis, controller, hydraulic control system and mechanism. The limit angle of the leveling control was set up to be ${\pm}15^{\circ}C$ for rolling, ${\pm}7^{\circ}C$ for pitching. The proposed control and hydraulic power system was implemented to the prototype slope tractor. This paper shows results about development of the automatic leveling mechanism and response properties for slope tractor.

A Control Strategy of Auto-Leveling Equipment of Multi-Function Radar for Vehicle based on Embedded System Modeling

  • Byeol Han;Yushin Chang;Sungyong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the control strategy of Auto-leveling equipment (ALE) of Multi-function radar (MFR) for vehicle using Embedded System. MFR implements surveillance patrol missions such as surface-to-air missiles and fighters with constant rotation. ALE consists of 4 Auto-leveling modules (ALM) and retains the stability with maintaining level. The gradient of vehicle can be measured and controlled by embedded systems. This paper contributes for improvement the system design with the ALM 1 set modeling. The validity of the modeling is verified using MATLAB/Simulink.

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

Smart EVs Charging Scheme for Load Leveling Considering ToU Price and Actual Data

  • Kim, Jun-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • With the current global need for eco-friendly energies, the large scale use of Electric Vehicles (EVs) is predicted. However, the need to frequently charge EVs to an electrical power system involves risks such as rapid increase of demand power. Therefore, in this paper, we propose a practical smart EV charging scheme considering a Time-of-Use (ToU) price to prevent the rapid increase of demand power and provide load leveling function. For a more practical analysis, we conduct simulations based on the actual distribution system and driving patterns in the Republic of Korea. Results show that the proposed method provides a proper load leveling function while preventing a rapid increase of demand power of the system.

Modeling of Battery Energy Storage System at Substation for Load Leveling and Its Economic Evaluation (부하 평준화를 위한 변전소 설치 배터리 에너지 저장장치의 모델 및 경제성 평가에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.950-956
    • /
    • 2012
  • As development of battery technologies, the installation of Battery Energy Storage System (BESS) increased. The BESS can be used for various purposes such like frequency response, load leveling, and fluctuation mitigation of renewable energy generators. In this paper, three state BESS model is proposed. the BESS model considering charge, discharge and keeping efficiency, and life cycle according to depth of discharge (DOD). Then, the benefit and cost of BESS installed at substation for load leveling are summarized. The economic evaluation of BESS is analyzed using net present values (NPV) analysis. In case study, the NPV analysis of NaS battery system is carried out using the proposed BESS model. Because the result of economic evaluation of BESS using nowadays cost data is not positive, the sensitivity analysis of BESS is conducted by changing the capital cost and energy cost.

The Load Leveling Effect of Light Control System (조명제어시스템의 부하관리 효과)

  • Han, Seung-Ho;Kim, Seong-Cheol;Choi, Kyoung-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.285-287
    • /
    • 2008
  • This paper represents the electric power load leveling effect of the Light Control System(LCS). The lighting of typical mid-large commercial buildings is the major factor of daytime electric power consumption. Since the national peak power demand occurs in between 11:00 and 16:00, the dimming control of light can contribute the decrease of the power demand We will discuss the load leveling effect of dimming control with LCS.

  • PDF

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.

Implementation and Test of Hydraulic Control System for the Tractor Leveling (트랙터의 수평제어를 위한 유압 시스템의 특성 실험)

  • Lee, S. S.;Oh, K. S.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.383-390
    • /
    • 1999
  • When a tractor travels slope lands, problems of operator safety and the reduction of job efficiency usually occur. Therefore, maintaining the tractor body being horizontal is critical to improve the security of traveling and the job performance. An experiment was made in a soil bin using the experimental model system built and equipped with a leveling control system. Adaptability of the control system was tested and investigated by analyzing system response in time and frequency domains. Control response time of hydraulic cylinder with 10lpm flow rate on a step input of 10$^{\circ}$slope was about 0.42sec. And it showed a linearly increasing trend without any hunching state. A steady state error of 0.6$^{\circ}$occurred but it was negligible. The hydraulic control system showed a little phase differences within the range of 0.4Hz input frequency. The experimental model showed that implementation of the proposed tractor control system to on slope lands tractor was feasible.

  • PDF

Auto-Leveling of HID Headlamp Using Preview Control

  • Yang, Boojoong;Kang, Heeyong;Yang, Sungmo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1404-1411
    • /
    • 2002
  • A newly developed high intensity discharge (HID) automotive headlamp results in a high luminous gradient at the cutoff line, and proves the superior concept in safer and more com-fortable nighttime driving. This new headlamp technology Provides drivers expanded night vision by a significantly improved light pattern. However, the HID headlamp may dazzle other traffics during traversing a rough road or encountering an unexpected bump. To resolve this problem, an automatic headlamp leveling device is necessary. A preview control is presented for the design of the leveling system. The proposed control algorithm is capable of attenuating a dynamic glare which is one of the major detractors to a driving in dark roads. Computer simulations using ADAMS are carried out to confirm the effectiveness on the control system.

A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter (화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘)

  • Hong, Hyun-Su;Park, Chan-Gook;Han, Hyung-Seok;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF