• Title/Summary/Keyword: Level shifted multi-carrier PWM

Search Result 4, Processing Time 0.02 seconds

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식의 대칭 기법)

  • 전재현;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.624-631
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWM method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method is introduced and is verified through the experiment result.

The Carrier-based PWM Method for Voltage Balance of Flying Capacitor Multi-bevel Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 위한 캐리어 비교방식의 펄스폭변조기법)

  • 이상길;강대욱;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • This paper proposes a new carrier-based PWM method to solve the most serious problem of flying capacitor multi-level inverter that is the unbalance of capacitor voltages. The voltage unbalance occurs due to the difference of each capacitor's charging and discharging time applied to Flying Capacitor Inverter. New solution controls the variation of capacitor voltages into the mean '0'during some period by means of new carriers using the leg voltage redundancy in the flying capacitor inverter. The solution can be easily expanded to the multi-level inverter. The leg voltage redundancy in the new method makes the switching loss of device equals to the conduction loss of device. This paper will examine the unbalance of capacitor voltage and the conventional theory of self-balance using Phase-shifted carrier. And then the new method that is suitable to the flying capacitor inverter will be explained.

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Iinverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식을 이용한 캐리어 대칭 기법)

  • Jeon J.H.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.606-610
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows Into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWN method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method Is introduced and is verified through the experiment result.

  • PDF

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.