• Title/Summary/Keyword: Levee collapse rate

Search Result 2, Processing Time 0.016 seconds

Model Tests for Deriving Failure Parameter during Levee Overflow (제방 월류시 붕괴매개변수 도출을 위한 모형실험)

  • Kim, Jin-Man;Cho, Won-Beom;Choi, Bong-Hyuck;Oh, Eun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • According to the damage investigation in 2002, the failures of river levee were caused by overflow, erosion, and unstable body conditions due to piping, inappropriate embanking materials, and poor compaction. Especially, overflow was identified as a main reason that induces levee failure by 39.5% from the distribution of failure types. The major parameters, such as levee collapsing angle (${\theta}$), levee collapsing rate (k) affect inundation velocity and area size during the analysis of inundation modeling, however, domestic research effort on this area is still insufficient. In this paper authors conducted levee failure experiments of 4 levee height types, 0.20 m, 0.25 m, 0.30 m, and 0.40 m based on theassumption of Froude Similarity (${\lambda}_{Fr}=1$). As a result, the authors suggested a levee failure mechanism according to the levee heights (H), a collapse extension lengthwhich is around, levee collapse angle (${\theta}$), levee collapse rate (k).

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.