• Title/Summary/Keyword: Lethal gene

Search Result 132, Processing Time 0.028 seconds

Rabbit Hemorrhagic Disease Virus Variant Recombinant VP60 Protein Induces Protective Immunogenicity

  • Yang, Dong-Kun;Kim, Ha-Hyun;Nah, Jin-Ju;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1960-1965
    • /
    • 2015
  • Rabbit hemorrhagic disease virus (RHDV) is highly contagious and often causes fatal disease that affects both wild and domestic rabbits of the species Oryctolagus cuniculus. A highly pathogenic RHDV variant (RHDVa) has been circulation in the Korean rabbit population since 2007 and has a devastating effect on the rabbit industry in Korea. A highly pathogenic RHDVa was isolated from naturally infected rabbits, and the gene encoding the VP60 protein was cloned into a baculovirus transfer vector and expressed in insect cells. The hemagglutination titer of the Sf-9 cell lysate infected with recombinant VP60 baculovirus was 131,072 units/50 μl and of the supernatant 4,096 units/50 μl. Guinea pigs immunized twice intramuscularly with a trial inactivated RHDVa vaccine containing recombinant VP60 contained 2,152 hemagglutination inhibition (HI) geometric mean titers. The 8-week-old white rabbits inoculated with one vaccine dose were challenged with a lethal RHDVa 21 days later and showed 100% survival rates. The recombinant VP60 protein expressed in a baculovirus system induced high HI titers in guinea pigs and rendered complete protection, which led to the development of a novel inactivated RHDVa vaccine.

Development of a Unidirectional Expression Vector: in a Search of Suppressor against a Cell Death-Inducing Protein, Jpk

  • Kong Kyoung-Ah;Park Sung-Do;Kim Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.139-143
    • /
    • 2006
  • Jopock (Jpk) has previously been ascertained that induces both bacterial and mammalian cell death. The Escherichia coli cells expressing Glutathion S-transferase (GST) fused Jpk showed elongated phenotype and inhibited cell growth which led eventual cell death. In an attempt to search the genetic suppressor of the lethal protein Jpk in bacterial cells, we constructed a unidirectional protein expression vector inserting tac promoter next to the C-terminus Jpk in pGEX-Jpk. The function of additional tac promoter was confirmed by substituting lac promoter in Plac-TOPO plasmid. The cells harboring plac- TOPO, which regulates $lacZ{\alpha}$ gene expression under lac promoter, formed blue colonies in 5-bromo-4-3 $indolyo-{\beta}-D-galactoside$ (X-gal) plate. When lac promoter was changed to tac promoter, same results were observed. Since the addition of tac promoter did not affect the toxic effect of Jpk, the pGEX-Jpk-ptac could be a useful vector for the screening of suppressor(s) for Jpk, in which GST-Jpk and a putative Jpk-suppressing protein are coexpressing from two unidirectional tac promoters, which response to the same inducer, $isopropyl-{\beta}-D-thiogalactopyranoside (IPTG)$.

  • PDF

Epigenetic Regulation of miR-129-2 Leads to Overexpression of PDGFRa and FoxP1 in Glioma Cells

  • Tian, Xiang-Yang;Zhang, Ling;Sun, Lai-Guang;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6129-6133
    • /
    • 2015
  • miR-129-2 is frequently downregulated in multiple cancers. However, how it is silenced in cancers remains unclear. Here we investigated the expression profile and potential biological function of miR-129-2 in glioblastoma (GBM), the most common and lethal form of brain tumors in adults. We showed that miR-129-2 is lost in GBM patient specimens and cultured cell lines. miR-129-2 expression could be restored upon treatment with a histone deadetylase inhibitor (trichostatin A) but not a DNA methylation inhibitor (5-Aza-2'-deoxycytidine), and more profound effect was observed with the treatment of these two drugs in combination. Furthermore, forced expression of miR-129-2 repressed the expression of major oncogenic genes such as PDGFRa and Foxp1 in GBMs. Consistently, expression of miR-129-2 significantly inhibits GBM cell proliferation in vitro. These results reveal that miR-129-2 is epigenetically regulated and functions as a tumor suppressor gene in GBMs, suggesting it may serve as a potential therapeutic target for GBM treatment.

Transcriptional Alteration of Two Metallothionein Isoforms in Mud Loach (Misgurnus mizolepis) Fry during Acute Heavy Metal Exposure

  • Lee, Sang-Yoon;Stoliar, Oksana;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • Altered mRNA expression of two metallothionein isoforms (MT-IA and MT-IB) in response to acute heavy metal exposure was examined in mud loach, Misgurnus mizolepis, fry using a real-time RTPCR assay. Sublethal exposure (1 or 5 ${\mu}M$) to Cd, Cr, Fe, Mn, Ni, and Zn resulted in highly variable transcriptional responses of the two MT isoforms to the heavy metal ions, including upregulation, a steady state, and downregulation. Overall, the most potent inducer of both MT isoforms was Cd (up to 6-fold). Another exposure experiment using a series of doses of Cu revealed that the stimulation patterns of the two MT isoforms differed: MT-IA transcription was soon saturated at higher concentrations (about 2-fold at 1-4 ${\mu}M$ of Cu), whereas the activation of MT-IB was more dependent on the treatment dose (increased up to 5-fold at 3 ${\mu}M$). The isoform-specific allotment of constitutive and inducible functions was not as clear in fry as in adult tissues. Coordinated interaction between the MT-IA and MT-IB isoforms was hypothesized based on the finding that MT-IA represented a primary action under 'less stressful' or 'sublethal' conditions, whereas the activation of MT-IB became important under 'more stressful' or 'lethal' circumstances in this species.

DNA Sequence Analysis of 1-Nitropyrene-4,5-Oxide and 1-Nitropyrene-9,10-Oxide Induced Mutations in the hprt Gene of Chinese Hamster Ovary Cells

  • Kim, Hyun-Jo;Kim, Tae-Ho;Lee, Sun-Young;Lee, Dong-Hoon;Kim, Sang-In;Pfeifer, Gerd P.;Kim, Seog K.;Lee, Chong-Soon
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.114-123
    • /
    • 2005
  • Nitropyrene, the predominant nitropolycyclic hydrocarbon found in diesel exhaust, is a mutagenic and tumorigenic environmental pollutant that requires metabolic activation via nitroreduction and ring oxidation. In order to determine the role of ring oxidation in the mutagenicity of 1-nitropyrene, its oxidative metabolites, 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, were synthesized and their mutation spectra were determined in the coding region of hprt gene of CHO cells by a PCR amplification of reverse-transcribed hprt mRNA, followed by a DNA sequence analysis. A comparison of the two metabolites for mutation frequencies showed that 1-nitropyrene 9,10-oxide was 2-times higher than 1-nitropyrene 4,5-oxide. The mutation spectrum for 1-nitropyrene 4,5-oxide was base substitutions (33/49), one base deletions (11/49) and exon deletions (5/49). In the case of 1-nitropyrene 9,10-oxide, base substitutions (27/50), one base deletions (15/50), and exon deletions (8/50) were observed. Base substitutions were distributed randomly throughout the hprt gene. The majority of the base substitutions in mutant from 1-nitropyrene 4,5-oxide treated cells were $A{\rightarrow}G$ transition (15/33) and $G{\rightarrow}A$ transition (8/33). The predominant base substitution, $A{\rightarrow}G$ transition (11/27) and $G{\rightarrow}A$ transition (8/27), were also observed in mutant from 1-nitropyrene 9,10-oxide treated cells. The mutation at the site of adenine and guanine was consistent with the previous results, where the sites of DNA adduct formed by these compounds were predominant at the sites of purines. A comparison of the mutational patterns between 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide showed that there were no significant differences in the overall mutational spectrum. These results indicate that each oxidative metabolite exhibits an equal contribution to the mutagenicity of 1-nitropyrene, and ring oxidation of 1-nitropyrene is an important metabolic pathway to the formation of significant lethal DNA lesions.

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.

A Case of Lethal Neonatal Type Carbamoyl Phosphate Synthetase 1 Deficiency with Novel Mutation of CPS1 (새로운 CPS1 유전자 돌연변이에 의한 신생아형 carbamoyl phosphate synthetase 1 결핍 1례)

  • Suh, Seung-hyun;Kim, Yoo-Mi;Byun, Shin Yun;Son, Seung Kook;Kim, Seong Heon;Kim, Hyung Tae;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • Carbamoyl phosphate synthetase 1 (CPS1) deficiency is an autosomal recessive urea cycle disorder which causes hyperammonemia. CPS1 is the first enzyme step in the urea cycle and almost patients present their symptoms during neonatal period. We report a case of CPS1 deficiency in a boy who developed symptoms including lethargy and seizure at 3 days of age. The ammonia level was up to $2,325{\mu}mol/L$, sodium benzoate (250 mg/kg/d) and high calories of both dextrose and lipid was promptly administered. Central access by experienced pediatric surgeon and emergent continuous hemodialysis by pediatric nephrologist was performed within 3 hours and ammonia was less than $100{\mu}mol/L$ at 5 days of age. Currently, he has showed excellent response to treatments including scavenging drugs and a low-protein diet. Despite of diffuse increasing signal intensity on cerebral white matters and basal ganglia on brain MRI, his development and weight gain were good at the last follow-up at 11 months of age. Molecular assay of the CPS1 gene demonstrated that patient had compound heterozygous for c.1529del ($p.Gly510Alafs^*5$) in exon 14 and c.3142-1G>C (IVS25(-1)G>C) in intron 25 and exon 26 boundary. The splicing mutation was novel mutation and inherited from patient's mother. Here, we report a neonatal lethal type CPS1 deficiency patient having novel mutation.

  • PDF

Cyanobacteria and Secondary Metabolites (시아노박테리아의 이차대사물질에 대한 연구)

  • Kim, Gi-Eun;Kwon, Jong-Hee
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.356-361
    • /
    • 2007
  • Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Although some cyanobacteria produce lethal toxins such as microcystins and anatoxins, some may be useful either for development into commercial drugs or as biochemical tools. Detection of unknown secondary metabolites was carried in the present study by a screening of 98 cyanobacterial strains from Cyanobiotech GmbH in order to establish a screening process, isolate pure substances and determine their bioactivities. A degenerated polymerase chain reaction technique as molecular approaches has been used for general screening of NRPS gene and PKS gene in cyanobacteria. A putative PKS gene was detected by DKF/DKR primer in 38 strains (38.8%) and PCR amplicons resulted from a presence of NRPS gene were showed by MTF2/MTR2 primer in 30 strains (30.6%), respectively. A screening of interesting strains was performed by comparing PCR screening results with HPLC analyses of extracts. HPLC analysis for a detection of natural products was performed in extracts from biomass. 5 strains were screened for further scale-up processing. 7 pure substances were isolated from the scale-up cultures and tested for bioactivities under consideration to purity, amount and molecular weight of substances. One substance isolated from CBT 635 showed cytotoxic activity. This substance may be regarded as Microcystin LR.

Anaerobic Acid Tolerance Response in Salmonella typhimurium (Salmonella typhimurium의 혐기적 산내성도 평가)

  • Kim, Young-Chan;Lee, Sun;Lee, Kyung-Mi;Im, Sung-Young;Park, Yong-Geun;Baek, Hyung-Seok;Park, Kyung-Ryang;Lee, In-Soo
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.169-175
    • /
    • 1999
  • Salmonella typhimurium can encounter a wide variety of environments during its life cycle. In nature, S. typhimurium can experience and survive dramatic acid stresses that occur in diverse ecological niches ranging from pond water to phagolysosomes. These survival mechanism is aquired by the Acid Tolerance Response(ATR) in Salmonella. The ATR of S. typhimurium is a complex inducible phenomenon in which exposures to slight or moderate low pH will produce a stress response capable of protecting the organism against more severe acid challenges. ATR in Salmonella has two different systems that are called RpoS dependent and independent. We found that ATR in anaerobic was showed RpoS independent because rpoS$\Omega$AP had ATR as S. typhimurium UK1. Using the P22 MudJ(Km, lacZ) operon fusion technique and a lethal selection procedure combining low pH(pH4.5) and sodium acetate(10mM, pH4.5), we isolated LF487 aatA::MudJ which showed acid sensitive in anaerobic condition. aatA locus was determined at 12 min on Salmonella Genetic Map. The survival rate of aatA mutant was showed significantly diminished at pH4.3 than virulent wild type Salmonella in anaerobic condition(5% $CO_2$, 5% H$_2$, 90% $N_2$). Therefore isolated gene was confirmed important gene for anaerobic ATR system.

  • PDF

A case of Smith-Lemli-Opitz syndrome diagnosed by identification of mutations in the 7-dehydrocholesterol reductase (DHCR7) gene (7-dehydrocholesterol reductase (DHCR7) 변이로 진단된 Smith-Lemli-Opitz 증후군 1예)

  • Park, Mee Rim;Ko, Jung Min;Cheon, Chong-Keun;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1236-1240
    • /
    • 2008
  • Smith-Lemli-Opitz syndrome (SLOS) is a rare, autosomal recessive disease caused by an inborn error in cholesterol synthesis. Patients with this disease suffer from multiple malformations due to reduced activity of 7-dehydrocholesterol reductase (DHCR7), which increases 7-dehydrocholesterol (7DHC) and 8-dehydrocholesterol (8DHC) concentrations and decreases cholesterol concentration in body fluids and tissue. The SLOS phenotypic spectrum ranges from a mild disorder with behavioral and learning problems to a lethal disease characterized by multiple malformations. Here, we describe a newborn male with ambiguous genitalia who was diagnosed to have type II SLOS during the neonatal period. A clinical examination revealed low levels of unconjugated estriol in the maternal serum, and a variety of fetal ultrasound anomalies, including prenatal growth retardation. After birth, the infant was diagnosed to have congenital heart disease (Tetralogy of Fallot with severe pulmonary artery stenosis), cleft lip and palate, micrognathia, postaxial polydactyly, ambiguous genitalia, and cataracts. Clinical investigation revealed extremely low plasma cholesterol levels and the presence of mutation (homozygote of p.Arg352Gln) in the DHCR7 gene. The patient underwent palliative heart surgery (to widen the pulmonary artery) and received intravenous lipid supplementation. Cholesterol levels increased slightly, but not to normal values. The patient died from cardiopulmonary failure and sepsis 72 days after birth. This report provides the first description of a Korean patient with SLOS confirmed by verification of DHCR7 gene mutation and illustrates the need for early recognition and appropriate diagnosis of this disease.