• Title/Summary/Keyword: Lentivirus

Search Result 61, Processing Time 0.031 seconds

Transduction of eGFP Gene to Human Embryonic Stem Cells and Their Characterization (인간 배아줄기세포로의 eGFP 유전자 도입 및 특성 분석)

  • Kim, Yoon-Young;Ku, Seung-Yup;Park, Yong-Bin;Oh, Sun-Kyung;Moon, Shin-Yong;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Objective: Human embryonic stem cells (hESCs) can proliferate indefinitely and differentiate into all kinds of cell types in vitro. Therefore, hESCs can be used as a cell source for cell-based therapy. Transduction of foreign genes to hESCs could be useful for tracing differentiation processes of hESCs and elucidation of gene function. Thus, we tried to introduce enhanced green fluorescent protein (eGFP) gene to hESCs, XX and XY cell lines in this study. Methods: Lentivirus containing eGFP was packaged in 293T cells and applied to hESCs to transduce eGFP. Expression of transduced eGFP was evaluated under the fluorescence microscope and eGFP positive population was analyzed by FACS. Expression of undifferentiation state markers such as Oct4, Nanog, SSEA4 and Tra-1-81 was examined by RT-PCR and/or immunofluorescence in eGFP-hESCs after transduction. In addition, the ability of eGFP-hESCs to form embryoid bodies (EBs) was tested. Results: eGFP was successfully transduced to hESCs by lentivirus. eGFP expression was stably maintained up to more than 40 passages. eGFP-hESCs retained expression patterns of undifferentiation state markers after transduction. Interestingly, disappearance of transduced eGFP was notably observed during spontaneous differentiation of eGFP-hESCs. Conclusion: We established eGFP expressing hESC lines using lentivirus and showed the maintenance of undifferentiation characteristics of these eGFP-hESCs. This reporter-containing hESCs could be useful for tracing the processes of differentiation of hESCs and other studies.

Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells (렌티바이러스와 아데노바이러스를 통하여 쥐의 중간엽줄기세포에 사람 나트륨/옥소 공동수송체 유전자를 전달하였을 때의 발현성능 비교)

  • Park, So-Yeon;Kim, Sung-Jin;Lee, Won-Woo;Lee, Heui-Ran;Kim, Hyun-Joo;Chung, June-Key;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.394-400
    • /
    • 2008
  • Purpose: Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Materials and Methods: Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was $19.1{\pm}4.7%$, $54.0{\pm}6.4%$, $85.7{\pm}8.7%$, and $98.4{\pm}1.3%$ at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and 1-125 uptake. Results: Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro 1-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC ($29,704{\pm}6,659\; picomole/10^6\;cells$) was greater than that in adeno-hNIS-rMSC at MOI 100 ($6,168{\pm}2,134\;picomole/10^6\;cells$). Conclusion: Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

UBE2S promotes the proliferation and survival of human lung adenocarcinoma cells

  • Liu, Zhi;Xu, Lijun
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.642-647
    • /
    • 2018
  • Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitination process, is involved in development of various cancers. However, its role in lung adenocarcinoma, has not been well elucidated. In this report, we attempted to investigate expression and function of UBE2S in lung adenocarcinoma. Up-regulation of UBE2S at mRNA, and protein level, was observed in human cancer tissues and lung adenocarcinoma cells. Higher UBE2S expression correlated with poorer prognosis of lung adenocarcinoma patients. UBE2S expression was efficiently suppressed by lentivirus-mediated shRNA strategy in A549 cells, and UBE2S silencing led to reduced cell proliferation, colony formation, and enhanced apoptosis. Inverse results were observed, in UBE2S over-expressed H1299 cells. Microarray analysis indicated that a large number of genes were regulated by UBE2S, and p53 signaling pathway may be critical, to the role of UBE2S in cancer development. Together, UBE2S could be a potential target for lung adenocarcinoma.

A Study of the Generation of Transgenic Chickens That Express Human SOD-3 Protein (사람의 SOD-3 단백질을 발현하는 형질전환 닭 생산 연구)

  • Byun, S.J.;Park, C.;Kim, J.A.;Woo, J.S.;Lee, H.C.;Kim, T.Y.;Kim, S.H.;Seong, H.H.;Park, J.K.;Jeon, I.S.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • Lentiviral vector system is efficient vehicles for the delivery of exogenous genes, and it is generally used in the generation of transgenic chickens. In this study, we used recombinant lentiviral vectors to generate transgenic chicks that express the human superoxide dismutase-3 gene driven by the chicken ovalbumin promoter. It is well known that superoxide dismutases(SODs) are believed to play a crucial role in protecting cells against oxygen toxicity. There are three forms of SOD proteins: cytosolic Cu-Zn SOD, mitochondrial Mn SOD, and extracellular SOD(SOD-3). The recombinant lentivirus containing the human SOD-3 gene was injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. From 341 injected embryos, the 78 chicks hatched after 21 days incubation. The hatched chicks were screened for the human SOD-3 gene by using PCR. Two of 47 male chickens that survived to sexual maturity contained the human SOD-3 gene in their semen. These results showed that our transgenic chicken generation system was completely established.

A Study on the Genomic Patterns of SARS coronavirus using Bioinformtaics Techniques (바이오인포매틱스 기법을 활용한 SARS 코로나바이러스의 유전정보 연구)

  • Ahn, Insung;Jeong, Byeong-Jin;Son, Hyeon S.
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.522-526
    • /
    • 2007
  • Since newly emerged disease, the Severe Acute Respiratory Syndrome (SARS), spread from Asia to North America and Europe rapidly in 2003, many researchers have tried to determine where the virus came from. In the phylogenetic point of view, SARS virus has been known to be one of the genus Coronavirus, but, the overall conservation of SARS virus sequence was not highly similar to that of known coronaviruses. The natural reservoirs of SARS-CoV are not clearly determined, yet. In the present study, the genomic sequences of SARS-CoV were analyzed by bioinformatics techniques such as multiple sequence alignment and phylogenetic analysis methods as well multivariate statistical analysis. All the calculating processes, including calculations of the relative synonymous codon usage (RSCU) and other genomic parameters using 30,305 coding sequences from the two genera, Coronavirus, and Lentivirus, and one family, Orthomyxoviridae, were performed on SMP cluster in KISTI, Supercomputing Center. As a result, SARS_CoV showed very similar RSCU patterns with feline coronavirus on the both axes of the correspondence analysis, and this result showed more agreeable results with serological results for SARS_CoV than that of phylogenetic result itself. In addition, SARS_CoV, human immunodeficiency virus, and influenza A virus commonly showed the very low RSCU differences among each synonymous codon group, and this low RSCU bias might provide some advantages for them to be transmitted from other species into human beings more successfully. Large-scale genomic analysis using bioinformatics techniques may be useful in genetic epidemiology field effectively.

  • PDF

Efficient Control of Human G-CSF Gene Expression in the Primary Culture Cell using a FIV-Tet-On Vector System (FIV-Tet-On Vector System을 이용한 hG-CSF 유전자의 효율적인 발현 조절)

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.153-159
    • /
    • 2007
  • In this study, using FIV-based lentivirus vector system, we tried to express hG-CSF in tetracycline-controllable manner. hG-CSF influences the proliferation, differentiation, and survival of cells in the neutrophil lineage. To enhance stability and translation of hG-CSF transcript, WPRE sequence was also introduced into FIV-Tet-On vector at downstream region of either the hG-CSF gene or the sequence encoding rtTA. Primary culture cells (CEF, chicken embryonic fibroblast; PFF, procine fetal fibroblast) infected with the recombinant FIV were cultured in the medium supplemented with or without doxycycline for 48 hours, and induction efficiency was measured by comparing the hG-CSF gene expression level using quantitative real-time PCR, Western blot and ELISA. Higher hG-CSF expression and tighter expression control were observed from the vector in which the WPRE sequence was placed at downstream of the hG-CSF (in CEF) or rtTA (in PEE) gene. This FIV-Tet-On vector system may be helpful in solving serious physiological disturbance problems which has continuously hampered successful production of transgenic animals and gene therapy.

Toll-like Receptor 5 Agonist Inhibition of Growth of A549 Lung Cancer Cells in Vivo in a Myd88 Dependent Manner

  • Zhou, Shi-Xiang;Li, Feng-Sheng;Qiao, Yu-Lei;Zhang, Xue-Qing;Wang, Zhi-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2807-2812
    • /
    • 2012
  • The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

Roles of GST-π and polβ Genes in Chemoresistance of Esophageal Carcinoma Cells

  • Tang, Yue;Xuan, Xiao-Yan;Li, Min;Dong, Zi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7375-7379
    • /
    • 2013
  • The main aim of this study was to investigate the roles of GST-${\pi}$ and $pol{\beta}$ genes in the chemoresistance of esophageal carcinoma cells. Eukaryotic expression vectors containing each gene were constructed and transfected into EC9706 cells, and the biological effects of the two genes assessed based on a resistance index. We additionally investigated the in vitro and in vivo anti-resistance effects of GST-${\pi}$ and $pol{\beta}$ genes using recombinant lentiviruses carrying siRNAs against the two genes. Our results showed that upregulation of GST-${\pi}$ and $pol{\beta}$ genes suppresses chemosensitivity of esophageal carcinoma cells to cisplatin, while downregulation of these two genes with RNAi technology reverses this chemoresistance. Multi-site injection of recombinant lentivirus targeting the GST-${\pi}$ gene into transplanted cDDP tumors effectively reversed their chemoresistant phenotype. However, the same treatment against the $pol{\beta}$ gene did not lead to significant efficacy against chemoresistance.

Myosin VI contributes to malignant proliferation of human glioma cells

  • Xu, Rong;Fang, Xu-hao;Zhong, Ping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 significantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma.

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.