• Title/Summary/Keyword: Lens of eye dose

Search Result 32, Processing Time 0.025 seconds

Review on Regulatory and Technical Standards of Radiation Protection for Lens of the Eye (수정체 방사선 방호에 관한 규제기준 및 기술기준 검토)

  • Si Young Kim;Seok-Ju Hwang;Jae Seong Kim;Jung-Kwon Son
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The International Commission on Radiological Protection (ICRP) lowered the annual equivalent dose limit of lens of the eye for radiation workers from 150 to 20 mSv in April 2011. This trend of lowering the equivalent dose limit for radiation workers has been observed worldwide, including international organizations such as the International Atomic Energy Agency (IAEA), International Organization for Standardization (ISO) and the European Commission (EC). In 2016, the Nuclear Safety and Security Commission of South Korea published research results that included a proposal for lowering the equivalent dose limit of lens of the eye for radiation workers in line with the ICRP recommendation. However, as of now, South Korea's Nuclear Safety Act and related regulations still specify an annual equivalent dose limit of lens of the eye as 150 mSv for radiation workers. The IAEA and ISO have issued guidelines regarding radiation protection for lens of the eye and recommended a dose level for the lens of the eye at 5 or 6 mSv per year for periodic monitoring of the equivalent dose for the lens of the eye.

A preliminary evaluation of the implementation of a radiation protection program for the lens of the eye in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Cho, Moonhyung;Jung, Yoonhee;Son, Jung Kwon;Jang, Han;Kim, Hee Geun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3035-3043
    • /
    • 2021
  • Epidemiological research has revealed that radiation exposure can cause cataracts. The Korean nuclear regulatory body has proposed the reduction of the occupational dose limit for the lens of the eye from 150 mSv/y to 100 mSv/5y, with an additional limitation of not exceeding 50 mSv/y for a specific year, taking into account the recommendations of the International Commission on Radiological Protection, and the International Atomic Energy Agency. This means that radiation workers should receive the same level of radiation safety for the lens of the eye as for whole-body protection. Korean nuclear power plants (NPPs) are conducting research to establish the radiation protection program for the lens of the eye. In terms of the preliminary results of the implementation of the radiation protection program for the lens of the eye dedicated to Korean NPPs, this review article summarizes the current state of understanding of the regulations, technical guidance, eye lens dosimeters, and radiation field conditions resulting in lens dose.

Development of Detailed Korean Adult Eye Model for Lens Dose Calculation

  • Han, Haegin;Zhang, Xujia;Yeom, Yeon Soo;Choi, Chansoo;Nguyen, Thang Tat;Shin, Bangho;Ha, Sangseok;Moon, Sungho;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Background: Recently, the International Commission on Radiological Protection (ICRP) lowered the dose limit for the eye lens from 150 mSv to 20 mSv, highlighting the importance of accurate lens dose estimation. The ICRP reference computational phantoms used for lens dose calculation are mostly based on the data of Caucasian population, and thus might be inappropriate for Korean population. Materials and Methods: In the present study, a detailed Korean eye model was constructed by determining nine ocular dimensions using the data of Korean subjects. The developed eye model was then incorporated into the adult male and female mesh-type reference Korean phantoms (MRKPs), which were then used to calculate lens doses for photons and electrons in idealized irradiation geometries. The calculated lens doses were finally compared with those calculated with the ICRP mesh-type reference computational phantoms (MRCPs) to observe the effect of ethnic difference on lens dose. Results and Discussion: The lens doses calculated with the MRKPs and the MRCPs were not much different for photons for the entire energy range considered in the present study. For electrons, the differences were generally small, but exceptionally large differences were found at a specific energy range (0.5-1 MeV), the maximum differences being about 10 times at 0.6 MeV in the anteroposterior geometry; the differences are mainly due to the difference in the depth of the lens between the MRCPs and the MRKPs. Conclusion: The MRCPs are generally considered acceptable for lens dose calculations for Korean population, except for the electrons at the energy range of 0.5-1 MeV for which it is suggested to use the MRKPs incorporating the Korean eye model developed in the present study.

A Feasibility Study on the Lens of Eye Dose Assessment Using the System of Multi-Element TLD (다중소자 열형광선량계에 의한 수정체 등가선량 평가의 적정성 연구)

  • Lee, Na-Rae;Han, Seung-Jae;Lee, Byung-Il;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • International Commission on Radiological Protection (ICRP) has revised its recommendations concerning the tissue reaction to ionizing radiation in accordance with consideration of the detriment arising from non-cancer effects of radiation on health based on recent epidemiological basis. Particularly, for the lens of the eye, the threshold in absorbed dose revised to be 0.5 Gy, for occupational exposure in planned exposure situation the commission recommended "An equivalent dose limit for the lens of the eye of 20 mSv in a year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv." To monitor the radiation exposure of radiation worker, TLD is typically provided and the lens of eye dose can be assessed by run of dose calculation algorithm with TL element response data. This study is to assess equivalent dose of the lens of eye using the Harshaw TLD system and its two different dose calculation algorithms. The result provides the Harshaw TLD system showed the assessment of the lens of eye dose with 48.84% error range.

Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography (CT 검사에서 유리선량계를 이용한 수정체의 비스무트 차폐 효과)

  • Jung, Mi-Young;Kweon, Dae-Cheol;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The purpose of our study was to determine the eyeradiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lensshielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eyewith the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lenswithout qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Dose Distribution for Eye Shielding Block In 6 MV Photon Beam Therapy (6 MV 광자선치료에서 안구차폐기구의 제작과 선량분포 측정)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 1992
  • The eye lens is known to be radiosensitive organ and catarat can be induced by relatively low dose of radiation. In the treatment of head and neck tumors, shielding blocks are frequently used to minimize dose on sensitive organs. The shielding block, which is made of high atomic number materials (cerrobend), produce significant dose perturbations in megavoltage photon beams. The effects of these perturbations of eye shielding blocks are measured with film and ion chambers for the treatment of head and neck malignancies. Optimum parameters for the treatment are suggested.

  • PDF

Assessment of the Eye Lens Dose Reduction by Bismuth Shields in Rando Phantom Undergoing CT of the Head (Head CT 검사 시 안구 차폐용 Bismuth사용에 의한 수정체 선량 감소에 대한 평가)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, In-Ja;Chang, Sang-Gyu;Chung, Jung-Pyo;Lee, Hyun;Kim, Jang-Seob;Shin, Dong-Cheol;Choi, Jong-Hak;Lee, Ki-Sung;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.171-175
    • /
    • 2008
  • The aim of this study is to assess the dose reduction of eye lens and availability of bismuth garments resulting from the use of radioprotective bismuth garments to shield the eyes of patients undergoing head CT. Rando phantom and TLDs were used to determine the amount of dose reduction by bismuth shielding of the eye in the following simulated CT scans : (a) scanning of the head including orbits, (b) scanning of the whole head, and (c) $20^{\circ}$ angled scanning of the head excluding orbits. The average dose reduction of eye lens was 43.2%, 36.0% and 1.4% for the three CT scans listed above. Significant reduction in the eye lens dose was achieved by using superficial orbital bismuth shielding during head CT scans. However, bismuth shields should not be used for the patients when their eyes are excluded from the primarily exposed region.

  • PDF

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

  • Yokoyama, Sumi;Tsujimura, Norio;Hashimoto, Makoto;Yoshitomi, Hiroshi;Kato, Masahiro;Kurosawa, Tadahiro;Tatsuzaki, Hideo;Sekiguchi, Hiroshi;Koguchi, Yasuhiro;Ono, Koji;Akiyoshi, Masahumi;Kunugita, Naoki;Natsuhori, Masahiro;Natsume, Yoshinori;Nabatame, Kuniaki;Kawashima, Tsunenori;Takagi, Shunji;Ohno, Kazuko;Iwai, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Background: In Japan, new regulations that revise the dose limit for the lens of the eye (hereafter the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulation Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set not to exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 examples. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of the guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimize radiation protection.

Radiation Dose Distribution of a Surgeon and Medical Staff during Orthopedic Balloon Kyphoplasty in Japan

  • Ono, Koji;Kumasawa, Takafumi;Shimatani, Keiichi;Kanou, Masatoshi;Yamaguchi, Ichiro;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Background: The present study investigated the radiation dose distribution of balloon kyphoplasty (BKP) among surgeons and medical staff, and this is the first research to observe such exposure in Japan. Materials and Methods: The study subjects were an orthopedic surgeon (n = 1) and surgical staff (n = 9) who intervened in BKP surgery performed at the National Hospital Organization Disaster Medical Center (Tokyo, Japan) between March 2019 and October 2019. Only disposable protective gloves (0.022 mmPb equivalent thickness or less) and trunk protectors were used, and no protective glasses or thyroid drapes were used. Results and Discussion: The surgery time per vertebral body was 36.2 minutes, and the fluoroscopic time was 6.8 minutes. The average exposure dose per vertebral body was 1.46 mSv for the finger (70 ㎛ dose equivalent), 0.24 mSv for the lens of the eye (3 mm dose equivalent), 0.11 mSv for the neck (10 mm dose equivalent), and 0.03 mSv for the chest (10 mm dose equivalent) under the protective suit.The estimated cumulative radiation exposure dose of 23 cases of BKP was calculated to be 50.37 mSv for the fingers, 8.27 mSv for the lens, 3.91 mSv for the neck, and 1.15 mSv for the chest. Conclusion: It is important to know the exposure dose of orthopedic surgeons, implement measures for exposure reduction, and verify the safety of daily use of radiation during surgery and examination.