• Title/Summary/Keyword: Lens mount

Search Result 29, Processing Time 0.024 seconds

Ultra Precision Machining Characteristics of PMMA in HMD optical system (HMD 광학계용 PMMA의 초정밀 가공 특성)

  • Yang J.S.;Kim G.H.;Yang S.C.;Lee I.J.;Kim M.S.;Lee D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1566-1570
    • /
    • 2005
  • The aspherical lenses are used as optical lens of HMD optical system. The optimum cutting condition of PMMA lens sample with ultra precision SPDT, the diamond tool nose radius, the cutting speed, the feed rate, the depth of cut, and cutting fluid type are found. The demanded surface roughness 10 nm Ra, aspherical form error $1.0\;\mu{m}$ P-V for aspherical lens of optical data storage device are satisfied.

  • PDF

Development of Surface-mount-type Crown-shaped Lens for Reducing Glare Effect of Light-emitting Diode Light Source (LED 광원의 눈부심 현상을 감소시키기 위한 표면 실장형 CR 렌즈 개발)

  • Park, Yong Min;Bang, Hyun Chul;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This paper introduces the use of a crown-shaped (CR) lens to effectively diffuse the light from a light-emitting diode (LED) without any loss in the light intensity, in contrast to polymer-bulb-type diffusers. The diffusion lens was designed based on the Snell's law, which describes the physical path of a ray passing through the boundary between different media. CR lenses were fabricated by polydimethylsiloxane (PDMS) casting and UV-embossing processes, which used a pre-designed metal mold and UV-curable resin, respectively. Through experiments and optical evaluations, it was verified that the newly proposed CR lens not only decreased the vertical light strength and glare effect from an LED light source but also improved the diffusion characteristics while maintaining the quality of the LED's light intensity.

Geometric Correction of Vehicle Fish-eye Lens Images (차량용 어안렌즈영상의 기하학적 왜곡 보정)

  • Kim, Sung-Hee;Cho, Young-Ju;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.601-605
    • /
    • 2009
  • Due to the fact that fish-eye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. However, vehicle fish-eye cameras have diagonal output images rather than circular images and have asymmetric distortion beyond the horizontal angle. In this paper, we introduce a camera model and metric calibration method for vehicle cameras which uses feature points of the image. And undistort the input image through a perspective projection, where straight lines should appear straight. The method fitted vehicle fish-eye lens with different field of views.

  • PDF

Investigation of Asymmetric Aspherical Triangular Prism Optical System for Video Information Display (영상정보디스플레이용 비대칭 비구면 삼각 프리즘 광학계 연구)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.590-595
    • /
    • 2014
  • We have investigated anamorphic prism lenses with distortions of 0.3-0.5%. We designed the plastic triangular lens and confirmed the minimum resolution using MTF graphs. Also we confirmed that the SVGA optical system can realize a resolution of $864{\times}648$ 56 megapixels. A distortion of about 0.5% aberration appears in the maximum field, and a finite beam aberration of about $15{\mu}m$ is confirmed. We made a mold based on the design data and completed the prism lens through exodus molding. We confirmed the shape error (< $30{\mu}m$) and surface roughness (> 40 nm) of the three sides. We made the video-information-display prototype glasses using prism lens by measuring the performance, we determined the distortion aberration (0.3%) and SVGA resolution. Our approach will enable fabrication of a portable large-screen display device for glasses and sunglasses for the domestic market and, after 2015, for the world market.

Automatic Focus Control for Assembly Alignment in a Lens Module Process (렌즈 모듈 생산 공정에서 조립 정렬을 위한 자동 초점 제어)

  • Kim, Hyung-Tae;Kang, Sung-Bok;Kang, Heui-Seok;Cho, Young-Joon;Park, Nam-Gue;Kim, Jin-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.

A Machine Vision System for Inspecting Tape-Feeder Operation

  • Cho Tai-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • A tape feeder of a SMD(Surface Mount Device) mounter is a device that sequentially feeds electronic components on a tape reel to the pick-up system of the mounter. As components are getting much smaller, feeding accuracy of a feeder becomes one of the most important factors for successful component pick-up. Therefore, it is critical to keep the feeding accuracy to a specified level in the assembly and production of tape feeders. This paper describes a tape feeder inspection system that was developed to automatically measure and to inspect feeding accuracy using machine vision. It consists of a feeder base, an image acquisition system, and a personal computer. The image acquisition system is composed of CCD cameras with lens, LED illumination systems, and a frame grabber inside the PC. This system loads up to six feeders at a time and inspects them automatically and sequentially. The inspection software was implemented using Visual C++ on Windows with easily usable GUI. Using this system, we can automatically measure and inspect the quality of ail feeders in production process by analyzing the measurement results statistically.

Design of Off-axis Wide Angle Lens for the Automobile Application

  • Kim, Tae Young;Shin, Min-Ho;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.336-343
    • /
    • 2013
  • Recently various types of driver assistance systems have been used for automobiles. In 2008, the U.S Congress passed a law which required that most cars be equipped with devices to warn objects behind the vehicle. Because of that, market of rear view cameras is expected to rise dramatically. Therefore many suppliers try to provide a wide angle camera for car makers. But a high distortion is caused by the wide angle might result in lower image quality. In order to improve the image quality, normally we use an algorithm to correct a distortion. Though we can improve the distorted image by correction algorithm, we must pay more cost to use it. In this paper, we propose a new optical system reducing a distortion in contrast to a conventional lens without cost. In other words, we can see only an area of interest. That is similar to reducing a field of view. Using a new optical system, we can get a less distorted image. In order to view an area of interest, we introduce an off axis optical system having refractive surfaces and reflective surfaces. In this paper, we describe the results of design and, evaluation of an off axis wide angle compact imaging system. In comparison to conventional wide angle lens, we can get the improvement of MTF, distortion, and lateral color aberrations. And we also can reduce a total cost because we don't need the outer apparatus or bracket to mount on the car.

An Inspection System for Measuring Feeding Accuracy of Tape Feeders (테이프 피더의 부품공급 정밀도 측정을 위한 검사 시스템)

  • Jo, Tae-Hun;Lee, Seong-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.573-577
    • /
    • 2002
  • A tape feeder of a SMD(Surface Mount Device) mounter is a device that sequentially feeds electronic components on a tape reel to the pick-up system of the mounter. As components are getting much smaller, feeding accuracy of a feeder becomes one of the most important factors for successful component pick-up. Therefore, it is critical to keep the feeding accuracy to a specified level in the assembly and production of tape feeders. This paper describes a tape feeder inspection system that was developed to automatically measure and inspect feeding accuracy using machine vision. It consists of a feeder base, an image acquisition system, and a personal computer. The image acquisition system is composed of CCD cameras with lens, LED illumination systems, and a frame grabber inside the PC. This system loads up to six feeders at a time and inspects them automatically and sequentially. The inspection software was implemented using Visual C++on Windows NT with easily usable GUI. Using this system, we can automatically measure and inspect the quality of all feeders in production process by analyzing the measurement results statistically.

Design of an Anamorphic Aspherical Prism Lens for the Head Mount Display (HMD용 회전 비대칭 비구면 프리즘 렌즈 설계)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.83-88
    • /
    • 2008
  • Purpose: To design an anamorphic aspherical prism lens for the HMD optical system. Methods: First, we get the initial data, needed in design, which are distances between each surface etc., by analyzing user's demended specifications and by drawing geometrically the shape of prism lens by using CAD. Based on these data and using 'ode V' which is an optical design software, we could progress the optimization in which we treat the coefficients of the anamorphic aspherical surface as the principal variables. To reduce the cost in DTM manufacturing, we would optimize the optical system with the transmitting surface, existed in the direction of video device among 3 surfaces of the prism lens, remaining as a plane. Results: we could design one anamorphic aspherical prism lens which has the finite ray aberration of 15 ${\mu}m$, the distortion of 0.5%, and the MTF value of 0.3 over at 36 lp/mm for the video device of 12 mm ${\times}$ 9 mm size. Conclusions: We designed a prism lens used for HMD. This prism lens has the optical capacities of 15 ${\mu}m$ finite ray aberration and 0.5% distortion for the video device of 12 mm ${\times}$ 9 mm size, and become the optical system having the MTF value of 0.3 over at 36 lp/mm.

  • PDF

Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens (비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법)

  • Cho, Young-Ju;Kim, Sung-Hee;Park, Ji-Young;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Due to the fact that fisheye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Not only use the camera as a viewing system, but also as a camera sensor, camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. In this thesis, we introduce a geometric correction technique to minimize the loss of the image data from a vehicle fish-eye lens having a field of view over $180^{\circ}$, and a asymmetric distortion. Geometric correction is a process in which a camera model with a distortion model is established, and then a corrected view is generated after camera parameters are calculated through a calibration process. First, the FOV model to imitate a asymmetric distortion configuration is used as the distortion model. Then, we need to unify the axis ratio because a horizontal view of the vehicle fish-eye lens is asymmetrically wide for the driver, and estimate the parameters by applying a non-linear optimization algorithm. Finally, we create a corrected view by a backward mapping, and provide a function to optimize the ratio for the horizontal and vertical axes. This minimizes image data loss and improves the visual perception when the input image is undistorted through a perspective projection.