• Title/Summary/Keyword: Lens design

Search Result 846, Processing Time 0.023 seconds

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Characterizations of Spherical Luneburg Lens Antennas with Air-gaps and Dielectric Losses

  • Kim, Kang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, spherical Luneburg lens antennas have been systematically analyzed using the Eigenfunction Expansion Method (EEM), The developed technique has capability of performing a complete 3-D analysis to characterize the multi-layered dielectric spherical lens with arbitrary permittivity and permeability. This paper describes the analysis technique, and presents the results of the parametric study of Luneburg lens antennas by varying design parameters suoh as the diameter of the lens antenna (up to 80 wavelength), number of spherical shells (up to 30 shells), air-gaps between spherical shells, and dielectric loss of the material. Many representative engineering design curves including the far-field patterns, wide-angle sidelobe characterizations, antenna efficiency have been presented.

  • PDF

Compact Rotman Lens with Size-Reduced Transition Structures between the Lens Body and the Connecting Lines

  • Lee, Woosung;Kim, Youngsub;Kim, Jaeheung;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.120-126
    • /
    • 2013
  • This paper introduces a new design for a Rotman lens that has been proposed to minimize its size and provide a suitable design for a compact beamforming system. The size reduction is realized by minimizing the length of the transition structures, which are positioned between the lens body and the connecting lines. The proposed structure is much shorter than a conventional transition structure, which is a tapered line in general. As a result, a 45% size reduction can be achieved by using the proposed transition structure, compared to a typical Rotman lens with linearly tapered lines. Therefore, the proposed Rotman lens will be suitable for compact beamforming systems.

Design of Two-group Zoom Lens System with Wide Angle of View Using Global Structure Function (전역구조함수를 사용한 광각 2군 줌 렌즈의 설계)

  • Kwon, Hyuk-Joon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.319-327
    • /
    • 2009
  • We introduce a new design technique by treating a two-group zoom lens system with a wide angle of view. First, the concept of the global optimization is introduced in the initial design stage, and from this, the global design technique is completed by analyzing and summarizing large quantities of modern design data. That is, we define the global structure function to achieve a new conceptual design technique for global optimization. And the function is put in a simple form by referring lots of patent data, manipulated with other algebraic equations, and solved finally such that we obtain the global solution region. The global solution region corresponds to the global optimization and suggests insightful systematized directions for the design of two-group zoom lens systems. These directions are attractive compared to global optimization.

Optics of the light-weight and foldable telescope based on the Fresnel lens

  • Yu, Hyungjoon;Park, Yong-Sun;Chung, Haeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.57.3-58
    • /
    • 2016
  • We analyze an optical system of a telescope based on Fresnel type objective lens as suggested by Hyde (1999). The Fresnel objective lens can be thin, light-weight and foldable, and therefore it is possible to develop a space telescope with an aperture larger than that of traditional telescopes. Moreover a lens, whatever it is either Fresnel type or conventional, allows much larger fabrication tolerances. We design a medium-sized telescope adopting Fresnel lens as an objective lens for use in space and possibly on the ground. The well-known chromatic aberration of the Fresnel primary lens is corrected by a field lens and another Fresnel lens using Schupmann method. An additional lens is used for forming images. We analyze the chromatic and off-axis aberrations of the proposed system analytically and suggest methods for the minimization of off-axis aberrations and for the operation in wider spectral range. We also conduct ray tracing and optimize the whole optical system with commercial software. Finally we present the design parameters of a telescope with an aperture of 0.5 to 1 meters, enabling diffraction limited operation for a moderate field of view about 10 arc-minutes.

  • PDF

Optical system design using lens modules I:optimum first order design in zoom lens (렌즈모듈을 이용한 광학계 설계 I: 줌렌즈의 First Order 최적설계)

  • 박성찬;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • This paper presents the optimum initial design containing the first and third order properties of the four-group video camera zoom system using lens modules, and its real lens design. The optimum initial design with focal length range of 6.1693 to 58.4065 mm is derived by assigning appropriate first order quantities and third order aberrations to each module along with the specific constraints required for optimization. By scaling the focal length of each lens group, an initial real lens selected for each group has been designed to match its focal length into that of the each lens module, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system consisting of original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in video zoom camera employing the rear focus method.

  • PDF

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.

Study on the Optical Properties Change according to the LED Illumination Collimator Lens Design Parameters (LED 조명용 Collimator Lens 설계변수에 따른 광학적 특성 변화에 관한 연구)

  • Won, Ye-Lim;Park, Gwang-Il;Jang, Jae-Hyeon;Kim, Jong-Tae;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, optical tracking and analysis was carried out to find the optical properties with respect to various geometric design parameters of collimator lens which is very efficient when collect the light. As a result, a whole, ellipse incident part can obtain a high light efficiency and a narrow beam angle, and angled cylinder incident part is confirmed to obtain high efficiency and a narrow beam angle at a certain height or more. When Transmission part have a specific surface which can reflect the light in forward direction, a good optical properties was confirmed.

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF