• Title/Summary/Keyword: Lens array

Search Result 239, Processing Time 0.029 seconds

Design of micro lens array (Micro lens array 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.204-211
    • /
    • 1994
  • Micro array lens systems are designed for a faximile or copy machine. The array type is hexagonal. Diameter of a lens is 0.16 mm and the distance of the center of the nearest neighbor is 0.192 mm. The magnitude of the lens system is 1:1. Working distane is 10.55 mm and the spot size is less than 0.04 mm radius on axis and 0.20 mm off-axis in case of single layer system. Working distance is 7.90 mm and the spot size is less than 0.07 mm radius on axis and 0.09 mm radius off axis in case of double layer system. Performance of single layer micro array lens system and double layer micro array lens system are compared with the characteristics of the ray fans.y fans.

  • PDF

Design and Implementation of an Approximate Surface Lens Array System based on OpenCL (OpenCL 기반 근사곡면 렌즈어레이 시스템의 설계 및 구현)

  • Kim, Do-Hyeong;Song, Min-Ho;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Kim, Kyung-Ah;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.1-9
    • /
    • 2014
  • Generally, integral image used for autostereoscopic 3d display is generated for flat lens array, but flat lens array cannot provide a wide range of view for generated integral image because of narrow range of view. To make up for this flat lens array's weak point, curved lens array has been proposed, and due to technical and cost problem, approximate surface lens array composed of several flat lens array is used instead of ideal curved lens array. In this paper, we constructed an approximate surface lens array arranged for $20{\times}8$ square flat lens in 100mm radius sphere, and we could get about twice angle of view compared to flat lens array. Specially, unlike existing researches which manually generate integral image, we propose an OpenCL GPU parallel process algorithm for generating real-time integral image. As a result, we could get 12-20 frame/sec speed about various 3D volume data from $15{\times}15$ approximate surface lens array.

Integral imaging system with enhanced depth of field using birefringence lens array

  • Park, Chan-Kyu;Lee, Sang-Shin;Hwang, Yong-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1135-1137
    • /
    • 2008
  • In this paper, it is proposed that the integral imaging technique is applied to reconstruct 3D (three dimensional) objects with enhanced depth of field, computationally and optically. Lens array using birefringence material is adopted to obtain the reconstruction. The elemental images sets are picked up through common micro lens array and utilized to present 3D reconstruction images using adopted lens array.

  • PDF

Three-dimensional integral imaging using an elastic PDMS lens array

  • Kim, Yun-Hee;Kim, Yeun-Tae;Jung, Jae-Hyun;Lee, Sin-Doo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.714-717
    • /
    • 2008
  • In this paper, we propose a three-dimensional (3D) integral imaging system using an elastic lens array instead of conventional rigid lens array. The lens array is made of polydimethylsiloxane (PDMS) that is optically transparent and flexible material. We can stretch the PDMS lens array to be expanded into a certain extent, and control the lens pitch of the system easily. That flexible design enables a fine 3D integral imaging display.

  • PDF

Parallel Processing Method for Generating Elemental Images from Hexagonal Lens Array (육각형 렌즈 어레이로부터 요소영상을 생성하기 위한 병렬 처리 기법)

  • Kim, Do-Hyeong;Park, Chan;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • According that most integral imaging techniques have used rectangular lens array, this integrated distribution of light is recorded in the form of a rectangular grid. However, hexagonal lens array gives a more accurate approximation of ideal circular lens and provides higher pickup/display density than rectangular lens array[4]. Using the parallel processing technique in order to generate the elemental imaging for hexagonal lens array, each pixel that compose the elemental imaging should be determined to belong to the hexagonal lens. This process is output to the screen for every pixel in progress, and many computations are required. In this paper, we have proposed parallel processing method using an OpenCL to generate the elemental imaging for hexagonal lens array in 3D volume date. In the experimental result of proposed method show speed of 20~60 fps for hexagonal lens array of $20{\times}20$ sizes and input data of Male[$128{\times}256{\times}256$] volume data.

Liquid Crystal Lens Array with Thermally Controllable Focal Length and Electrically Convertible Lens Type

  • Heo, Kyong Chan;Kwon, Jin Hyuk;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.88-94
    • /
    • 2015
  • This paper reports the fabrication of a lenticular liquid crystal (LC) lens array with thermally tunable focus and with the function of a convertible lens type, using the surface structure of a UV-curable polymer and a twisted-nematic (TN) LC cell. The TN LC cell makes the LC lenticular lens function as a converging or diverging lens by controlling electrically the polarization of input light. Therefore, the focal lengths for both the converging and diverging lenses, which can be switched from the TN cell, can be tuned by changing the effective refractive index of the LC by Joule heating of the transparent electrode. As a result, the focal length of the lens with the E7 LC was changed continuously from 8.7 to 31.2 mm for the converging lens type and from -9.8 to -14.2 mm for the diverging lens when the temperature was increased from 25 to $56^{\circ}C$.

Design of LCD Backlight Unit Coupled with Micro Fresnel Lens Array (배열형 소형 프레넬 렌즈가 결합된 LCD 백라이트의 설계)

  • Jeong, Man-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • A light guided plate coupled with the micro Fresnel lens array(MFTA) is designed to improve the efficiency of the LCD backlight unit. Blazed Frenel lens and binary multi-level Fresnel lens are adapted for the MFLA. This type of MFLA can replace the prism sheet and diffuser sheet which are used for the conventional type of the LCD backlight unit. The luminance and uniformity are calculated to verify the performance of the MFLA type LCD backlight unit.

A Color-Filterless LCD by using RGB LED array and lenticular lens array

  • Kwon, Jin-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.76-78
    • /
    • 2009
  • A liquid crystal display that does not use color filters is proposed. A backlight unit that employs compartmentalized RGB LED arrays and a lenticular lens array is used instead of the color filters in order to direct RGB LED lights into the RGB subpixels. A design of color-filterless LED backlight and experimental results are presented.

  • PDF

Design of Backlight Unit using Micro Fresnel Lens Array (Micro Fresnel Lens Array를 이용한 Backlight Unit 설계)

  • Ryu, Jae-Sun;Jeong, Man-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • A light-guide plate of an LCD backlight coupled with a microfresnel lens array (MFLA) is designed and analyzed. Computer simulated results of optical characteristics of our MFLA-type light-guided plate compared with the conventional prism-type one are presented. We show that the MFLA-type light-guide plate can replace well the conventional prism-type plate.

Fabrication of Micro-Lens Array with Long Focal Length for Confocal Microscopy (공초점 현미경용 장초점 마이크로렌즈 제작)

  • Kim, Gee-Hong;Lim, Hyung-Jun;Jeong, Mi-Ra;Lee, Jae-Jong;Choi, Kee-Bong;Lee, Hyung-Seok;Do, Lee-Mi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.472-477
    • /
    • 2011
  • This paper shows the method of fabrication of a micro lens array comprised of a Nipkow disk used in a large-area, high-speed confocal microscopy. A Nipkow disk has two components, a micro lens array disk and a pinhole array disk. The microlens array focuses illumination light onto the pinhole array disk and redirects reflected light from a surface to a sensor. The micro lens which are positioned in order on a disk have a hemispheric shape with a few tens of micron in diameter, and can be fabricated by a variety of methods like mechanical machining, semiconductor process, replication process like imprinting process. This paper shows how to fabricate the micro lens array which has a long focal length by reflow and imprinting process.