• Title/Summary/Keyword: Lens Analysis

Search Result 766, Processing Time 0.028 seconds

Neural Network Based Camera Calibration and 2-D Range Finding (신경회로망을 이용한 카메라 교정과 2차원 거리 측정에 관한 연구)

  • 정우태;고국원;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.510-514
    • /
    • 1994
  • This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.

  • PDF

Constraining Cosmological Parameters with Gravitational Lensed Quasars in the Sloan Digital Sky Survey

  • Han, Du-Hwan;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.34-34
    • /
    • 2014
  • We investigate the constraints on the matter density ${\Omega}m$ and the cosmological constant ${\Omega}{\Lambda}$ using the gravitational lensed QSO (Quasi Stellar Object) systems from the Sloan Digital Sky Survey (SDSS) by analyzing the distribution of image separation. The main sample consists of 16 QSO lens systems with measured source and lens redshifts. We use a lensing probability that is simply defined by the gaussian distribution. We perform the curvature test and the constraints on the cosmological parameters as the statistical tests. The statistical tests have considered well-defined selection effects and adopt parameter of velocity dispersion function. We also applied the same analysis to Monte-Carlo generated mock gravitational lens samples to assess the accuracy and limit of our approach. As the results of these statistical tests, we find that only the excessively positively curved universe (${\Omega}m+{\Omega}{\Lambda}$ > 1) are rejected at 95% confidence level. However, if the informations of the galaxy as play a lens are measured accurately, we confirm that the gravitational lensing statistics would be the most powerful tool.

  • PDF

A Study on Molding Condition of Aspheric Glass Lenses Using Design of Experiments Slow Cooling Condition

  • Cha, Du-Hwan;Lee, June-Key;Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Park, Yong-Pil;Jeong, Jong-Guy;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.464-464
    • /
    • 2008
  • This study investigated the slow cooling conditions in the molding of aspheric glass lens using the design of experiment (DOE). The optimization of the slow cooling conditions with respect to the form accuracy (PV) of the molded lens were ascertained by employing full factorial design. As a result of the analysis of variance (ANOVA) and P-value (significance level), it was verified that slow cooling rate represent the most significant operative variables that affect the corresponding response variable. In the optimum condition, the molded lens show 82% of transcription ratio.

  • PDF

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Optimal Grinding Condition of Tungsten Carbide(WC) for Aspheric Glass Lens Using DOE (DOE를 적용한 비구면 Glass 렌즈 성형용 초경합금(WC) 코어 연삭가공 최적화)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Ahn, Jun-Hyung;Cha, Du-Hwan;Lee, Dong-Gil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.41-45
    • /
    • 2006
  • In recent years, the demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co 0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

UNVEILING THE PROPERTIES OF FLS 1718+59: A GALAXY-GALAXY GRAVITATIONAL LENS SYSTEM

  • TAAK, YOON CHAN;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.401-403
    • /
    • 2015
  • We present the results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) field. A background galaxy ($z_s=0.245$) is severely distorted by a nearby elliptical galaxy ($z_l=0.08$), via gravitational lensing. The system is analysed by several methods, including surface brightness fitting, gravitational lens modeling, and spectral energy distribution fitting. From Galfit and Ellipse we measure basic parameters of the galaxy, such as the effective radius and the average surface brightness within it. gravlens yields the total mass inside the Einstein radius ($R_{Ein}$), and MAGPHYS gives us an estimate of the stellar mass inside $R_{Ein}$. By comparing these parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane and calculate the stellar mass fraction inside $R_{Ein}$, and discuss the results with regards to the initial mass function.

Design and analysis of the lens converting the spot light into the line light

  • Choi, Kyu-Man;Lee, Hae-Chun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.21-25
    • /
    • 2008
  • A CCFL which commonly used in the back light units for the LCD, possess very high brightness hence, was widely used as a line light source. However, the use of CCFL, caused for several environmental concerns since it contain highly toxic mercury, gradually replaced into a LED. But the LED is a spot light source, the dark area occurs in the surface of the back light units. In this paper, we proposed the lens that can convert the spot light into the line light and it can remove the dark area in the surface of the back light units. The lens is composed with the light condensation part and the light guiding part. The conditions obtained will be helpful to plan an optimum structure for such preparation.

  • PDF

Development of F-theta lens for Laser Scanning Unit (LSU) (레이저 주사광학계용 F-Theta Lens 개발)

  • Kim, Byeong-Gun;Lee, Gyeong-Sub;Jeong, Shang-Hwa;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.459-460
    • /
    • 2005
  • The global consumption of aspheric surfaces will expand rapidly on the Electronics and Optical Components, Information and Communications, Aerospace and Defense, and Medical optics markets etc. We must research on market, technology forecast and analysis of aspheric surfaces that is a principle step of ultra precision machine technology with a base one of optical elements. Especially, F-theta lens is one of the important parts in LSU(Laser scanning unit) because it affects on the optical performance of LSU dominantly. The core is most of important to produce plastic F-theta lens by plastic injection molding method, which is necessary to get the ultra-precision aspheric and non-axisymmetric machine processing technology.

  • PDF

A Study on the Form Accuracy Improvement of Mold Core for F-Theta Lens (F-Theta Lens 금형코어 형상정도 향상에 관한 연구)

  • Kim S.S.;Jeong S.H.;Kim H.U.;Kim H.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.777-780
    • /
    • 2005
  • The global consumption of aspheric surfaces will expand rapidly on the Electronics and Optical Components Information and Communications, Aerospace and Defense, and Medical optics markets etc. We must research on market, technology forecast and analysis of aspheric surfaces that is a principle step of ultra precision machine technology with a base one of optical elements. Especially, F-theta lens is one of the important parts in LSU(Laser scanning unit) because it affects on the optical performance of LSU dominantly. The core is most of important to produce plastic F-theta lens by plastic injection molding method, which is necessary to get the ultra-precision aspheric and non-axisymmetric machine processing technology.

  • PDF