• Title/Summary/Keyword: Lens Analysis

Search Result 771, Processing Time 0.023 seconds

Optimum Design and Characterization of F-Theta Lens by a 3D Printer(I) (초점보정 렌즈설계 및 3D 프린터 이용 가공 특성평가(I))

  • Shin, Hyun-Myung;Yoon, Sung-Chul;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • A focal length-correcting lens called the F-theta lens is required to compensate for the different focus on spot size due to the deflected incident laser beam. The F-theta lens was designed by the ray tracing method and fabricated by a 3D printer with polymer-based material. The designed F-theta lens is able to compensate for the focus on spot size by an incidence angle of 0 to 2 degrees. Based on the analysis of the simulation, there was almost no aberration in the $0^{\circ}C$ incidence angle, and the maximum of $50{\mu}m$ of aberration was observed at the incidence angle of $2^{\circ}$. Diffraction-encircled energy was analyzed to characterize the designed optics, and an image simulation was performed to confirm the actual image resolution.

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

Study on the Optical Properties Change according to the LED Illumination Collimator Lens Design Parameters (LED 조명용 Collimator Lens 설계변수에 따른 광학적 특성 변화에 관한 연구)

  • Won, Ye-Lim;Park, Gwang-Il;Jang, Jae-Hyeon;Kim, Jong-Tae;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, optical tracking and analysis was carried out to find the optical properties with respect to various geometric design parameters of collimator lens which is very efficient when collect the light. As a result, a whole, ellipse incident part can obtain a high light efficiency and a narrow beam angle, and angled cylinder incident part is confirmed to obtain high efficiency and a narrow beam angle at a certain height or more. When Transmission part have a specific surface which can reflect the light in forward direction, a good optical properties was confirmed.

A Study on the Correction of tens Distortion by Plumb tine Method (Plumb Line Method에 의한 렌즈왜곡보정에 관한 연구)

  • 강준묵;오원진;윤희천
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 1989
  • Lens distortion would produce image displacement, therefore correction of lens distortion is required urgently to improve accuracy of results in photogrammetry. The objective of this study is to find out lens distortion coefficients versus focussing distance on non-metric and metric camera and to investigate propriety of application of lens distortion coefficients to three dimensional analysis. Analytical plumb line method which needs not perform control survey and space resection and requires only one photograph was used in order to get lens distortion coefficients. As the result of this study, the coefficients of radial and tangential distortion change as focussing distance changes, and consequently it is reasonable to apply the eigenvalues of lens distortion coefficients according to focussing distance. When these coefficients were applied to actual measurement, standard errors decreased about 30% or 76% remarkably.

  • PDF

Numerical Investigation of Collection Efficiency of Virtual Impactor with Electro-Aerodynamic Lens (전기-공기역학적 렌즈를 이용한 가상임팩터 포집효율에 관한 수치적 연구)

  • Zahir, Muhammad Zeeshan;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.63-70
    • /
    • 2019
  • An electro-aerodynamic lens for improving the performance of virtual impactor has been proposed in this study. ANSYS FLUENT Release 16.1 was used for numerical analysis of virtual impactor with and without the electro-aerodynamic lens, used to collimate the incoming aerosol particles into a particle beam before injecting the particles into the virtual impactor. Particles supplied to the electro-aerodynamic lens were assumed to be highly charged. By using an aerodynamic lens before the virtual impactor, without any electrostatic effect, it was found that the cut-off diameter of the virtual impactor was reduced from $4.2{\mu}m$ to $0.68{\mu}m$ and that the fine particle contamination problem became more serious. However, by employing the combined electrostatic and aerodynamic effects, that is, by applying electric voltage potential to the electro-aerodynamic lens, the cut-off diameter was found to be further reduced to $0.45{\mu}m$ and the fine particle contamination was eliminated.

Focus-adjustment Method for a High-magnification Zoom-lens System (고배율 줌 광학계의 상면 오차 보정 방법)

  • Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • Zoom lenses are now starting to be applied to mobile-phone cameras as well. A zoom lens applied to a mobile-phone camera is mainly used to capture images in the telephoto range. Such an optical system has a long focal length, similar to that of a high-magnification zoom optical system, so the position of the imaging device also shifts significantly, due to manufacturing errors of the lenses and mechanical parts. In the past, the positional shift of the imaging device was corrected by moving the first lens group and the total optical system, but this paper confirms that the position of the imaging device can be corrected by selecting any two moving lens groups. However, it is found that more distance must be secured in the front and rear of a moving lens group for this purpose.

Analysis and Design of Wideband Rotman Lens with Exponential Taper Using Contour Integral and Segmentation Method (경계적분법과 세그멘테이션 기법을 이용한 광대역 지수함수 테이퍼 로트만렌즈의 해석 및 설계)

  • 이광일;이일규;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.629-632
    • /
    • 2003
  • This paper has been studied analysis and design of microstrip Rotman lens operating over wide band and wide steering angle by the contour integral method along with the segmentation method. All mutual coupling, internal reflections between ports with exponential taper are taken into account. Equally spaced ports are designed and realized which gives less amplitude ripple at array ports. The measured results of 12 input and 12 output lens show $\pm$1.8 dB insertion loss deviation over 6~18GHz wide frequency range and beam steering accuracy less than 1$^{\circ}$ over $\pm$53$^{\circ}$ angle and agrees well with the analysis results.

  • PDF

Sky Condition Analysis using the Processing of Digital Images (디지털 이미지 처리를 통한 천공상태 분석)

  • Park, Seong-Ye;Sim, Yeon-Ji;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • The accurate analysis of the outside sky conditions is necessary to increase the efficiency of blind PV system. To conduct the accurate analysis, this paper suggested a method to analyze the sky condition using a specific image processing technique. While a fisheye lens has a wide field-of-views, it causes a large distortion to the sky images. Therefore, this paper calculated the exchange ratio of sky images to consider a lens distortion. As results of the study, there was a difference of 7% to cloud area ratio F4 and F11. Also, it had a different result depending on the position of the cloud.

Analysis on Forces Acting on the Contact Lens Fitted on the Cornea (콘택트 렌즈에 작용하는 힘의 해석)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • A mathematical model is proposed to analyze the force; acting on the hard contact lens fitted on the cornea. The model incorporates the nonlinear equations and their numerical solution program, based on the formulations of surface tension force arising from the capillary action in the tear-film layer between the lens and cornea. The model simulates how the adhesion between lens and cornea varies according to the base curves and diameters of the lenses. When the spherical lens is fitted on the spherical cornea it is to rotate downward due to the weight of lens itself until it reaches an equilibrium position along the cornea where the counter(upward) moment caused by net force between the upper and lower portion of the periphery of lens. It is found that both the adhesion and displacement of lens along the cornea, where the gravity of lens balances the capillary-induced upward force, increases rapidly as the base curve of lens increases, i.e., as the lens gets flatter, while the increase in the diameter of lenses has resulted in the less increase in the rotation and adhesion. With the base curve and diameters of lenses being remained constant the increase in surface tension of tear film yields the increase in the adhesion between the cornea and lens while the initial rotation of lens is inversely proportional to the surface tension of the tear film.

  • PDF

CONSTRAINING COSMOLOGICAL PARAMETERS WITH IMAGE SEPARATION STATISTICS OF GRAVITATIONALLY LENSED SDSS QUASARS: MEAN IMAGE SEPARATION AND LIKELIHOOD INCORPORATING LENS GALAXY BRIGHTNESS

  • Han, Du-Hwan;Park, Myeong-Gu
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.83-92
    • /
    • 2015
  • Recent large scale surveys such as Sloan Digital Sky Survey have produced homogeneous samples of multiple-image gravitationally lensed quasars with well-defined selection effects. Statistical analysis on these can yield independent constraints on cosmological parameters. Here we use the image separation statistics of lensed quasars from Sloan Digital Sky Survey Quasar Lens Search (SQLS) to derive constraints on cosmological parameters. Our analysis does not require knowledge of the magnification bias, which can only be estimated from the detailed knowledge on the quasar luminosity function at all redshifts, and includes the consideration for the bias against small image separation quasars due to selection against faint lens galaxy in the follow-up observations for confirmation. We first use the mean image separation of the lensed quasars as a function of redshift to find that cosmological models with extreme curvature are inconsistent with observed lensed quasars. We then apply the maximum likelihood test to the statistical sample of 16 lensed quasars that have both measured redshift and magnitude of lens galaxy. The likelihood incorporates the probability that the observed image separation is realized given the luminosity of the lens galaxy in the same manner as Im et al. (1997). We find that the 95% confidence range for the cosmological constant (i.e., the vacuum energy density) is $0.72{\leq}{\Omega}_{\Lambda}{\leq}1.0$ for a flat universe. We also find that the equation of state parameter can be consistent with -1 as long as the matter density ${\Omega}_m{\leq}0.4$ (95% confidence range). We conclude that the image separation statistics incorporating the brightness of lens galaxies can provide robust constraints on the cosmological parameters.