• Title/Summary/Keyword: Length-to-diameter Ratios

Search Result 142, Processing Time 0.025 seconds

Reproductive Cycle and Induced Sexual Maturation of the Pacific Oyster, Crassostrea gigas (참굴, Crassostrea gigas의 생식주기와 성 성숙 유도)

  • Min, Kwang-Sik;Kim, Bong-Seok;Kim, Tae-Ik;Hur, Young-Baek;Chung, Ee-Yung
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Reproductive cycle, the condition index, sex ratio of the Pacific oysters, Crassostrea gigas were investigated by histological and morphometric data. The specimens were collected in the two oyster farms of Geoje and Namhae, Gyeongsangnam-do, Korea, from November 1995 to October 1996. Growth of shell length in two regions was similar, but growth of total weight of the oyster in Namhae was faster than that in Geoje oyster farm. The spawning periods in female and male clams were from July to October in Geoje and from June to October in Namhae oyster farm. Ripe oocytes were approximately 50 m in diameter. The reproductive cycle of in females and males in Geoje and Namhae oyster farms can be divided into five successive stages: early developing, late developing, ripe, partially spawned and spent/inactive. Monthly changes in gonad developmental phases showed somewhat different patterns between female and male clams except for the spawning period. On the whole, however, monthly changes in the gonad developmental phases showed a similar pattern in the same sex. The sex ratios of females to males in Geoje and Namhae oyster farms were not significantly different from a 1:1 sex ratio ($x^2$ = 0.55 (p > 0.05) in Geoje and $x^2$ = 0.27 ( p > 0.05) in Namhae). Artificial induction of maturation by heating of adult oysters (two-year-old) was investigated from 17 January to 18 March in 1996. Maturity at the fixed water temperature group of $20^{\circ}C$ was 80%, it showed the highest maturity of experimental groups cultured for five weeks. The survival (%) of Crassostrea gigas in the raised water temperature experimental groups (15, 20, $25^{\circ}C$) were over 98.5%, as similar to the control group (100%). But, the survival of C. gigas in the fixed water temperature experimental groups (15, 20, 25, $30^{\circ}C$) were decreased with the increase of the water temperatures. In the fixed water temperature experimental group of $30^{\circ}C$, the survival was 51.1%. Base on these results, the fixed water temperature of $20^{\circ}C$ was the best condition for artificial induction of sexual maturation.

  • PDF

An analysis of horizontal deformation of a pile in soil using a continuum soil model for the prediction of the natural frequency of offshore wind turbines (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 연속체 지반 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Lee, Jong-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.480-490
    • /
    • 2016
  • As wind turbines become larger and lighter, they are likely to respond sensitively by dynamic loads applied on them. Since the responses at resonances are particularly interested, it is required to be able to predict natural frequencies of wind turbines reliably at early design stage. To achieve this, the foundation-soil analysis is needed to be carried out and a finite element approach is adopted in general. However, the finite element approach would not be appropriate in early design stage because it demands heavy efforts in pile-soil modelling and computing facilities. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to handle. Therefore, they would be a useful tool in predicting a pile-soil interaction, particularly in early design stage. In this study an analysis for a pile inserted in soil is performed. The pile and soil are modelled as a beam and continuum medium, respectively, within an elastic range. In this analysis, influence factors at the pile head for lateral loads are predicted by means of this continuum approach for various length-diameter ratios of the pile. The influence factors predicted are validated with those reported in literature, proposed from a finite element analysis.

Rooting and Growth of Kalanchoe 'Gold Strike' Cuttings in Various Mixtures of CGF (재활용 CGE의 다양한 혼합비율에 따른 분화 칼란코에 ‘Gold Strike’ 삽수의 발근과 생육)

  • 이미영;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.108-114
    • /
    • 2002
  • Cellular glass foam (CGE), the reprocessed glass, has a possibility as a component of vegetative propagation media of floricultural crops due to the its excellent air and water permeability, similar to that of perlite. An experiment was conducted to evaluate the rooting and growth thereafter of Kalanchoe blossfeldiana ‘Gold Strike’in media containing various volume ratios of granular rockwool, peat-moss, CGF and perlite. The particle size of CGF and perlite was 2.0~4.0mm and 1.2~4.0mm, respectively. Cuttings were rooted in a fog tunnel with a mean temperature of 18.2$^{\circ}C$ and RH of 66.7% under a long day regime (14 h per day light period). Height, length of the longest root, stem diameter, no. of leaves, leaf area, percentage of rooted cuttings, shoot and root fresh weights, shoot and root dry weights, total chlorophyll concentration and physicochemical properties were measured. Cuttings rooted 100% in all treatments. Physicochemical properties in CGF and perlite-containing media showed little differences. The growth of rooted plants in the CGF-containing media was similar or rather superior to that in perlite-containing media. Consequently, CGF has a possibility as a vegetative propagation medium of Kalanchoe. To make wider commercial use of CGF, more demonstrative experiments and analyses are necessary.

Gradation Curve of Coarse Aggregate by Digital Image Analysis (디지털 이미지 처리 기법을 이용한 굵은골재의 입도분포곡선)

  • Lee, Kwan-Ho;Kim, Young-Jin;Hwang, Tak-Jin;Cho, Jae-Yoon
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2011
  • The purpose of this research is particle shape evaluation of aggregate using Digital Image Process(DIP). DIP is very useful to measure the roughness and particle shape of aggregates. Couple of aggregates, like standard sand, two different crushed stones, and two different marine aggregates, have been employed. Shape factors of two different marine aggregates are ranged 0.35 to 0.54. Crushed stone I is 0.74 which is highly flat, but standard sand is elongated shape. Especially, two marine aggregate showed a big difference of width and length which meaned a long shape. There is any significant difference of elongation ratio and flatness for each aggregate with different measuring system, like direct measurement of vernier calipers and DIP method. Shape conversion coefficient and equivalent diameter for changing 2D image to 3D image by the Digital Image Process(DIP) have been suggested and modified particle size distribution curve has been showed. The measured flatness ratios of each aggregate were 0.30, 0.36, 0.47 and 0.83, respectively. Also, the conversion shape coefficients of each aggregate were determinded as 0.77, 0.78, 0.84 and 0.92. The size of aggregate has been modified by multiplying the shape conversion coefficient and the aggregate size from DIP. The modified gradation curve with modified volume and weight of aggregate has been suggested. Within the limited test results, DIP is one of useful to get the particle shape of aggregate with limitation of measuring errors and to apply the particle distribution curve.

Effects of micro-topography on the crown growth of Picea jezoensis under different wind conditions on Mt. Deokyu, Korea (미지형과 바람이 덕유산 가문비나무(Picea jezoensis)의 수관생장에 미치는 영향)

  • Han, Ah Reum;Jung, Jong Bin;Park, Pil Sun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.277-285
    • /
    • 2019
  • This study was conducted to understand the growth characteristics of Picea jezoensis that was one of representative subalpine species in Korea, in the light of the effects of wind and micro-topography in its habitats on Mt. Deogyu, Korea. The prevailing wind directions were southwest and west at the study sites. We randomly selected P. jezoensis (height ≥ 1.5 m) on windward, intermediate, and leeward slopes and measured diameter at breast height (DBH), height, crown length by 8 directions in upper, middle and lower sectors of the crown. We examined the micro-topography of P. jezoensis stood on and classified it into 3 types: type 1 was mounded and fully exposed to surrounding environments without neighboring trees; type 2 was somewhat wind-protected by surrounding rocks, but no neighboring vegetation; type 3 was on gentle slope or flat where P. jezoensis grew with neighboring trees or shrubs. The ratios of height to DBH, and estimated crown growth to actual crown growth (hereafter crown growth ratio) were compared among the three types of micro-topography on windward, intermediate and leeward sites. The height growth per DBH and crown growth ratio in the upper and middle crowns were the smallest on the windward site, and the highest on the leeward site (p < 0.01). The crown growth ratio on type 1 on the windward site was only 46% of that on type 3 on the leeward site. Although on the same windward slope, trees on type 1 had more deformed crown shapes than that on Type 3, showing asymmetric crown cross-sectional areas. Wind and micro-topography played critical roles on the crown growth of P. jezoensis.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Studies on the Effects of Several Physico-Chemical Properties of Soils on the Growth, Nodulation and Yield in Soybeans (토양(土壤)의 몇가지 이화학적(理化學的) 성질(性質)이 대두(大豆)의 생육(生育), 근류형성(根瘤形成) 및 수량(收量)에 미치는 영향(影響))

  • Choi, Chang-Yoel
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.309-329
    • /
    • 1975
  • Studies were carried out to find the effect of various soil properties on the growth, nodulation and yield using a soybean variety, 'Tongbuktae', at various soils. The results of the study are summarized as follow: 1. The formation ratios of various characters in soybeans were different before and after flowering. The root length(89.3%), stem diameter(82.1%), plant height(77.8%), number of nodes(67.4%), and number of nodes(67.9%) gave the high formation ratio before flowering. However, the formation of number of nodules(66.3%), top dry weight(74.9%) and total dry weight(71.7%)was accomplished mainly after flowering. The ratio of the formation in root dry weight was appeared to be about same in the growth period before and after flowering. 2. Nodulation ratio after flowering shelved significantly positive correlation with dry matter accumulation. 3. T/R, top dry weight/plant height and plant height/root length were significantly associated with yield. The tested soils with higher ratio mentioned above, also showed higher yield. 4. pH, oraganic matter, phosphate, potassium, total nitrogen and molybdenum in the soils were significantly correlated with nodulation and yield. Content of calcium in the soils only showed significant association with yield. 5. Soil properties influenced yield were molybdenum, calcium, organic matter, pH, number of nodules, magnesium, phosphate, total nitrogen and potassium in the order of importance. This order was varied according to the soils employed in these studies.

  • PDF

A Study on the Dimensions, Surface Area and Volume of Grains (곡립(穀粒)의 치수, 표면적(表面積) 및 체적(體積)에 관(關)한 연구(硏究))

  • Park, Jong Min;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.84-101
    • /
    • 1989
  • An accurate measurement of size, surface area and volume of agricultural products is essential in many engineering operations such as handling and sorting, and in heat transfer studies on heating and cooling processes. Little information is available on these properties due to their irregular shape, and moreover very little information on the rough rice, soybean, barley, and wheat has been published. Physical dimensions of grain, such as length, width, thickness, surface area, and volume vary according to the variety, environmental conditions, temperature, and moisture content. Especially, recent research has emphasized on the variation of these properties with the important factors such as moisture content. The objectives of this study were to determine physical dimensions such as length, width and thickness, surface area and volume of the rough rice, soybean, barley, and wheat as a function of moisture content, to investigate the effect of moisture content on the properties, and to develop exponential equations to predict the surface area and the volume of the grains as a function of physical dimensions. The varieties of the rough rice used in this study were Akibare, Milyang 15, Seomjin, Samkang, Chilseong, and Yongmun, as a soybean sample Jangyeobkong and Hwangkeumkong, as a barley sample Olbori and Salbori, and as a wheat sample Eunpa and Guru were selected, respectively. The physical properties of the grain samples were determined at four levels of moisture content and ten or fifteen replications were run at each moisture content level and each variety. The results of this study are summarized as follows; 1. In comparison of the surface area and the volume of the 0.0375m diameter-sphere measured in this study with the calculated values by the formula the percent error between them showed least values of 0.65% and 0.77% at the rotational degree interval of 15 degree respectively. 2. The statistical test(t-test) results of the physical properties between the types of rough rice, and between the varieties of soybean and wheat indicated that there were significant difference at the 5% level between them. 3. The physical dimensions varied linearly with the moisture content, and the ratios of length to thickness (L/T) and of width to thickness (W/T) in rough rice decreased with increase of moisture content, while increased in soybean, but uniform tendency of the ratios in barley and wheat was not shown. In all of the sample grains except Olbori, sphericity decreased with increase of moisture content. 4. Over the experimental moisture levels, the surface area and the volume were in the ranges of about $45{\sim}51{\times}10^{-6}m^2$, $25{\sim}30{\times}10^{-9}m^3$ for Japonica-type rough rice, about $42{\sim}47{\times}10^{-6}m^2$, $21{\sim}26{\times}10^{-9}m^3$ for Indica${\times}$Japonica type rough rice, about $188{\sim}200{\times}10^{-6}m^2$, $277{\sim}300{\times}10^{-9}m^3$ for Jangyeobkong, about $180{\sim}201{\times}10^{-6}m^2$, $190{\sim}253{\times}10^{-9}m^3$ for Hwangkeumkong, about $60{\sim}69{\times}10^{-6}m^2$, $36{\sim}45{\times}10^{-9}m^3$ for Covered barley, about $47{\sim}60{\times}10^{-6}m^2$, $22{\sim}28{\times}10^{-9}m^3$ for Naked barley, about $51{\sim}20{\times}10^{-6}m^2$, $23{\sim}31{\times}10^{-9}m^3$ for Eunpamill, and about $57{\sim}69{\times}10^{-6}m^2$, $27{\sim}34{\times}10^{-9}m^3$ for Gurumill, respectively. 5. The increasing rate of surface area and volume with increase of moisture content was higher in soybean than other sample grains, and that of Japonica-type was slightly higher than Indica${\times}$Japonica type in rough rice. 6. The regression equations of physical dimensions, surface area and volume were developed as a function of moisture content, the exponential equations of surface area and volume were also developed as a function of physical dimensions, and the regression equations of surface area were also developed as a function of volume in all grain samples.

  • PDF

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles (이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구)

  • Seok-Won Yoon;Young-Eun Cho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants (Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구)

  • Kang, Hyun-Joo;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.