• Title/Summary/Keyword: Length-Scale Effect

Search Result 473, Processing Time 0.023 seconds

The effect of word length on f0 intervals: Evidence from North Kyungsang children

  • Kim, Jungsun
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.107-116
    • /
    • 2015
  • The present experiment investigated the effect of word length on the length of f0 intervals for North Kyungsang children. In order to find out the lengths of the f0 intervals, the f0 values at the midpoints of vowels in words were measured. F0 estimates were computed as intervals consistent with the logarithmic scale corresponding to the number of syllables in the words. The results indicated that the mean f0 intervals in words of different lengths showed a significant difference for the HH in HH vs. HHL and the LH in LH vs. LLH for North Kyungsang children. Adult speakers from the North Kyungsang region significantly differed only within the HH in HH vs. HHL. Adult speakers made a noticeable contribution in this characteristic from the children. The result of the adult study was presented to confirm whether the children used a North Kyungsang dialect. With respect to individual speaker differences, the North Kyungsang children showed more or less consistent patterns in quantile-quantile plots for the HH vs. HHL, but for the HL vs. LHL and LH vs. LLH, there were more variations than for the HH vs. HHL. The individual speakers' variation was the largest for the HL vs. LHL and the smallest for HH vs. HHL. Considering these results, the effect of word length on f0 intervals tended to show pitch accent-type-specific characteristics in the process of prosodic acquisition.

Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region (월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰)

  • Jeong, Tae-Yoon;Lim, Hee-Chang;Kim, Hyun-Goo;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

On elastic and plastic length scales in strain gradient plasticity

  • Liu, Jinxing;Wang, Wen;Zhao, Ziyu;Soh, Ai Kah
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.275-282
    • /
    • 2017
  • The Fleck-Hutchinson theory on strain gradient plasticity (SGP), proposed in Adv. Appl Mech 33 (1997) 295, has recently been reformulated by adopting the strategy of decomposing the second order strain presented by Lam et al. in J Mech Pays Solids 51 (2003) 1477. The newly built SGP satisfies the non negativity of plastic dissipation, which is still an outstanding issue in other SGP theories. Furthermore, it explicitly shows how elastic strain gradients and corresponding elastic characteristic length scales come into play in general elastic-plastic loading histories. In this study, the relation between elastic length scales and plastic length scales is investigated by taking wire torsion as an example. It is concluded that the size effects arising when two sets of length scales are of the same order are essentially elastic instead of plastic.

A Visual Effect according to Pants Style and Geometric Pattern - Using a 3D Virtual Garment System - (가상착의 시스템을 이용한 팬츠 스타일과 기하학 무늬의 특성에 따른 시각적 효과)

  • Park, Woo Mee
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.504-513
    • /
    • 2013
  • This study evaluates the difference of visual effect according to pant style and geometric pattern. The researcher made 28 stimuli-combination of four pant Stiles (classic, baggy, skinny, and bell-bottom) and seven geometric pattern (large vertical stripe, small vertical stripe, large horizontal stripe, small horizontal stripe, large check, small check, and hound's tooth check). The test involved 96 female college students. The stimuli were made with the i-Designer computer program. The panels tested the computer screen images of all manikins wearing pants. A 7-point scale was used to evaluate each image. For the data analysis, ANOVA and Duncan-test were applied along with an SPSS program. The results of this study are as follows. Three factors (lower-body compensation, abdomen highlight, and length compensation) influenced the visual effect pant styles and geometric patterns. The skinny style and large vertical stripe evaluated positively in elongated height and leg length and a slimmer overall body. It was shown that the vertical stripe pattern was evaluated as more positive than the horizontal stripe pattern in the visual effect; particularly, the results showed distinct aspects in the classic pants style. The mutual influence of the visual effect (according to pants style and geometric pattern) were indicated as two factors of lower-body compensation and length compensation. A more positive visual effects resulted in a higher mutual influence on pant style and geometric pattern.

The Effect of Hue and Tone, Skirt Width. Length Variation of Dress on Impression Formation (원피스드레스의 색상과 톤, 스커트 길이.폭의 변화가 인상 형성에 미치는 영향)

  • 최수경;강경자
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.4
    • /
    • pp.459-473
    • /
    • 2003
  • The purpose of this study is to identify the effect of four clothing cues(hue, tone, skirt width, and skirt length of dress)on female impressions. The experimental materials developed for this study are a set of stimuli and response scales. The Stimuli are 40 color pictures manipulated with four clothing cues by drawing. The 7-point scale designed for visual evaluation of female impression formation includes 29 bipolar adjectives. The subjects were 240 undergraduate female students in Chinju city. The results of this study are as follow: As analyzing the impression of female figure by the hue, tone, skirt width, and length, five factors including ability. activity, elegance, attractiveness, concentration of attention, and tenderness were identified. Among these factors, ability·activity and elegance were proved to be more important. Some interaction effects of clothing cues were found. The combination of skirt width and tone had significant effects on ability. activity. Hue and tone of dress had significant effects on concentration of attention and tenderness. Skirt width and hue, and skirt length and hue had significant effects on the impression of attractiveness. Also skirt length and hue significant effects on concentration of attention.

  • PDF

The Study on an Electric Noise Effect using Physical Scale Modeling (축소모형 실험을 이용한 전기적 잡음에 관한연구)

  • Yun, Jeum-Dong;Song, Young-Su;So, Kyung-Mok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.297-302
    • /
    • 2007
  • Recently, electrical resistivity survey is used in the various fields and applied to urban area with many electrical noises. Therefor it's necessary to observe the electrical noise effect of the geological structure. The physical scale modeling was conducted for measuring the electric noise effect of the two geological models at various distances, depths and diameters of the electric noise objects. The results are as following. 1. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various separated distances to the measurement line was disappeared at a half distance measurement line length regardless of electrode arrays. 2. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various depths was disappeared at 4unit apart from the measurement line regardless of electrode arrays. 3. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various diameters was disappeared at 4unit apart from the measurement line regardless of electrode arrays.

  • PDF

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • R.Arvind Singh;Yoon Eui-Sung;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials

  • Nejad, Mohammad Zamani;Hadi, Amin;Farajpour, Ali
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • In this paper, using consistent couple stress theory and Hamilton's principle, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded materials (BDFGMs) with small scale effects are investigated. To the best of the researchers' knowledge, in the literature, there is no study carried out into consistent couple-stress theory for free vibration analysis of BDFGM nanostructures with arbitrary functions. In addition, in order to obtain small scale effects, the consistent couple-stress theory is also applied. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in both axial and thickness directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of Hamilton principle. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of BDFG nano-beam. At the end, some numerical results are presented to study the effects of material length scale parameter, and inhomogeneity constant on natural frequency.