• Title/Summary/Keyword: Length of shade

Search Result 86, Processing Time 0.022 seconds

Effect of Light Intensity and Temperature on the Growth and Root Yield of Panax ginseng (광도와 온도가 인삼의 생육 및 수량에 미치는 영향)

  • 이종화
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 1988
  • This study was conducted to investigate the optimum temperature and light intensity of photosynthesis and transmittance in the shade for better growth and root yield of ginseng. The 3-year-old ginseng plants grown under the shade of 5, 10 and 20% transmittance did not show any significant difference in the stem length, stem diameter, leaf area and root length. The root diameter markedly increased under the shade of 10% and 20% transmittance, and the root was the heaviest under the shade of 20% transmittance. The 6-year-old ginseng plants grown at 20% transmittance showed the largest root diameter but the root length was not influenced by transmittance. The root was heaviest in the shade of 20% transmittance.

  • PDF

A Comparison of Vegetative Growth of Kentucky Bluegrass and Perennial Ryegrass Cultivars in Different Levels of Shade (그늘하에서의 Kentucky Bluegrass와 Perennial Ryegrass 품종의 생육비교)

  • 구자형;김태일;원동찬;송남현;송천영
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 1991
  • The purpose of this study was to determine the vegetative growth of two cool season turfgrasses during summer season in Korea. Ten respective cultivars of Kentucky bluegrass [Poapratensis L.] and perennial ryegrass [Lolium perenne L.] were exposed to unshaded, 30% and 60% shade for 4odays. First mowing height was 7cm, and then clippings were harvested every ten days at the same height. Shading increased the total length of clippings of all cultivars of two turfgrasses, but fresh and dry weight were significantly decreased. The highest shoot length obtained at 30% shade in Kentucky bluegrass and at 60% shade in perennial ryegrass. 'Rugky', 'Sydsport', 'Wabash' and 'Baron' of Kentucky bluegrass and 'Repel', 'Omega II', 'Ovation', 'Linn', 'Bell' and 'Manhattan' of perennial ryegrass showed relatively high tolerance to shade. Especially, in 'Citation II' perennial ryegrass, fresh and dry weight were increased by 30% shade. The number of tillers generally decreased with increasing shade. In 30% shade, 'Midnight' Kentucky bluegrass and 'Omega II' perennial ryegrass were least reduced and 'Baron' Kentucky bluegrass and 'Pennant' perennial ryegrass were most reduced. The cultivars of lower growth habit in full sunlight showed shade tolerance compared to those of higher growth habit.

  • PDF

Comparative Performance of Three Tropical Turfgrasses Digitaria longiflora, Axonopus compressus and St. Augustinegrass under Simulated Shade Conditions

  • Chin, Siew-Wai
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • Shade affects turf quality by reducing light for photosynthesis. The shade tolerance of the tropical grasses, Digitaria longiflora and Axonopus compressus were evaluated against Stenotaphrum secundatum (St. Augustinegrass). The grasses were established under shade structures that provide 0%, 50%, 75% or 90% shade level for 30 days. A suite of leaf traits, recorded from similar leaf developmental stage, displayed distinct responses to shade conditions. Leaf length, relative to control, increased in all three species as shade level increased. The mean leaf extension rate was lowest in St. Augustinegrass (80.42%) followed by A. compressus (84.62%) and D. longiflora (90.78%). The higher leaf extension rate in D. longiflora implied its poor shade tolerance. Specific leaf area (SLA) increased in all species with highest mean SLA increase in D. longiflora ($348.55cm^2mg^{-1}$)followed by A. compressus ($286.88cm^2mg^{-1}$) and St. Augustinegrass ($276.28cm^2mg^{-1}$). The highest SLA increase in D. longiflora suggested its lowest performance under shade. The percent green cover, as estimated by digital image analysis, was lowest in D. longiflora (53%) under 90% shade level compared to both species. The relative shade tolerance of the three turfgrasses could be ranked as St. Augustinegrass > A. compressus > D. longiflora.

Effects on Dry Matter Production and Growth of Zoysia japonica under the Light Environment I . Effect of Shade on Growth in Zoysia japonica (광환경이 잔디(Zoysia japonica)의 물질생산과 생장에 미치는 영향 I.차광율이 Zoysia japonica 생장에 미치는 영향)

  • 도봉현
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.95-114
    • /
    • 1991
  • This paper was designed to estimate the interaction of the first productivity, light conditions and to analyze the ecophysiological productivity, growth characteristics grown under various shading conditions in Zoysia japonica . The results summarized this experiment were as follows; 1.After transplanting the grass, increasing rate of leaf number and total leaf length was remarkahly high at the early growth stage in the control and the 30% shading plot. 2.The increasing rate of leaf area ratio (LA R) in all the experimental plot was remarkable high at the early growth stage after transplanting the grass. Especially, the control and 30% shading plot in compared with another plots, were remarkably high at rate of leaf area. 3.The length and the node number of rhizome in the control and 30% shading plot were also high and the difference was significantly large by the growth stage. 4.Chlorophyll content was very high at 36days after transplanting and then decreased. Increasing rate of shade resulted in its low content. The rate of chlorophyll a to b was decreased by in-creasing rate of shade. 5.The content of soluble sugar in the control and 30% shading plot was low at the early growth after transplanting and high at the late growth stage. Its content in the plot of 70% shading was remarkably low throughout the growth stage. 6.The increasing rate of standing plant in all the experimental plots was high at the early growth stage after transplanting. Increasing rate of shade was typically low through all the growth stage.

  • PDF

The effects of growth medium and partial shade on early growth of milkweed (Calotropis procera L.) under drought stress

  • Taghvaei, Mansour;Kordestani, Mojtaba Dolat
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The use of growth medium is often recommended milkweed seedlings to grow and develop after emergence, and it is affected by growth medium and local habitat conditions. The effects of growth medium and partial shade on early growth of milkweed under drought stress (Calotropis procera L.) were studied in a field experiment. A split-split plot experimental design with three replications was carried out in the nursery. The main treatment plot was divided into two levels of shade; (no shading and partial shading). Sub treatment plot1 included growth medium at four levels (G1 = clay [suitable for milkweed growth], G2 = clay + sand, G3 = clay + perlite, G4 = clay + perlite + sand) and sub treatment plot2 included drought (irrigation intervals) at six levels (D1 = 2 [control], D2 = 4, D3 = 6, D4 = 8, D5 = 10, and D6 = 12 days per for three month). The results showed that drought stress significantly decreased emergence percentage, shoot length, shoot dry weight (SDW1), root dry weight (RDW), seedling dry weight (SDW2) and vigor index (VI). The use of growth medium increased all seedling characteristics. The G3 (clay + perlite) growth medium showed the highest performance, especially in terms of emergence percentage and seedling dry weight. Partial shade improved shoot length, shoot dry weight, and vigor index. Our results showed that the best treatment for high-vigor milkweed seedlings under drought stress was G3 (clay + perlite) growth medium and partial shade.

Effect of Cultivation Using Plastic-Film House on Yield and Quality of Ginseng in Paddy Field (논토양에서 비닐하우스를 이용한 재배방법이 인삼의 수량 및 품질에 미치는 영향)

  • Kim, Dong Won;Kim, Jong Yeob;You, Dong Hyun;Kim, Chang Su;Kim, Hee Jun;Park, Jong Suk;Kim, Jeong Man;Choi, Dong Chil;Oh, Nam Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2014
  • The average and maximum temperature were $29.5^{\circ}C$ and $33.2^{\circ}C$ at 2:00 p.m. respectively, in the plastic-film house covered with shade net, and both of temperature were lower $0.6^{\circ}C$ and $1.3^{\circ}C$ than those of conventional shade. Light transmittance was 14% in the plastic-film house, while 9.9% in conventional shade during growing season from May to October. Withering time of aboveground part was on October 3rd in conventional shade with 60% of withering leaf, while it was on November 10th with 3.7% of withering leaf in the plastic-film house, about 40 days longer survival. The main disease incidence were 15% of anthracnose, 17% of leaf spot, 5% of phytophthora blight and 3% of gray mold in the conventional shade, while 0 ~ 0.1% disease incidence and 95% of emergence rate in the plastic-film house. The growth in the aboveground and underground part of ginseng was totally better, particularly characteristics affecting yield such as root length, main root length and diameter in the plastic-film house. The fresh weight was increased by 128% compared to the conventional shade and harvested roots per $3.3m^2$ were 36 roots in the conventional shade and 58 roots in the plastic-film house and futhermore yield per $3.3m^2$ was increased by 216% compared to the conventional shade. As covering materials, the rice straw in the plastic-film house was excellent. The ginsenoside contents affecting the quality of ginseng were higher in the plastic-film house indicating 0.333% of Rg1, 0.672% of Rb1, 0.730% of Rc and rate of red rusty root was less than 4.0 ~ 6.1%. Above the results, the quality of ginseng grown in the plastic-film house covered with shade net was improved than that of the conventional shade.

Effect of Light Intensity and Soil Water Regimes on the Growth of Ginseng (Panax ginseng C. A. Meyer) Seedling. (1 묘포의 광도및 토양함수량이 인삼의 생육에 미치는 영향)

  • Lee, S.S;Lee, C.H.;Park, H.
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 1984
  • This experiment was carried out to study the effects of light intensity and soil water regimes on the growth of ginseng seedling. The results were as follows: 1. The maximum light intensity and optimum temperature in 1,le photosynthesis of ginseng seedling were 10,000 lux and 23 $^{\circ}C$. Respiration rate was increased at high temperature. 2. Air and soil temperature under the shading were increased as the increase of light intensity but soil water contents were decreased as the increase of light intensity, whereas air and soil temperature were decreased as the increase of precipitation under the shade b5: soil water contents were increased as the increase of precipitation under the shade. 3. The higher the transmittance of the shade, the greater the specific leaf weight (S.L.W.) and stomatal density. In contrast, however, the contents of total chlorophyll, chlorophyll a and b, and stomatal length was decreased. There was no any significant difference light intensity of the a/b ratio of chlorophyll. 4. The highest photosynthesis was occurred in ginseng leaves grown under the shade 5% L.T.R. and net photosynthesis rates increased with increasing soil water contents. 5. Optimum condition for usable seedling yield were 5% L.T.R. and 3.3% precipitation under the shade. Useless seedling increased with increasing precipitation under the shade.

  • PDF

Effect of Light Intensity on Growth Characteristic and Flower Color Change of New Guinea Impatiens 'Fishlimp 149' (광도 차이에 따라 나타나는 뉴기니아 봉선화 생육 특성 및 화색 변화)

  • Lee, Ho-Sun;Kim, Su-Jeong;Shin, Woo-Gun;Yoo, Byeong-Cheon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2006
  • New Guinea impatiens (Impatiens hawkeri) shows very sensitive responses to different light conditions. Due to these phenomena, testers of DUS (distinctness, uniformity and stability) for granting plant variety protection right often have problems distinguishing genetic or physiological differences. New Guinea impatiens 'Fishlimp 149' was grown under several light intensities in a rain-sheltered vinyl house to observe differences of plant growth and flowering. As compared with the control (avg. $1,010{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), treatments of shade-1 (avg. $599{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and shade-2 (avg. $88{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed increased plant height, plant width, leaf size and pedicel length. On the contrary, these growth parameters decreased in shade-3 (avg. $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) with the lowest light intensity. Shade-1 treatment enhanced flower characteristics such as flower diameter, upper petal width, side petal width and lower petal length. However, these characteristics were suppressed by lower light intensities than that in shade-1. Anthocyanin contents of shoot, leaf and pedicel decreased with increasing shading, but that of flower petal was the greatest of the shade-1 treatment. Shade-1 treatment showed the greatest Hunter a value analyzed by a colorimeter, and L and b values increased with increasing shading. Shade-1 treatment seemed to be provided the most proper light condition for DUS test of New Guinea impatiens. Additionally, anthocyanin accumulation on New Guinea impatiens during DUS test was due to not genetic differences but physiological phenomenon.

Effect of Different Light Intensities on the Growth and Leaf Gas Exchanges in Miscanthus sinensis and Pennisetum purpurascens (참억새 및 수크령의 광도차에 따른 생육변화 및 가스교환에 미치는 영향)

  • Kwack, Hye Ran;Lee, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.110-115
    • /
    • 2004
  • This experiment was conducted to investigate the effect of light intensities on the growth responses, carbohydrate contents and the characteristics of leaf gas exchange in Miscanthus sinensis and Pennisetum purpurascens. The plant height and leaf length were increased to about 30% in the sun. However, those were reduced severely in the shade, and leaf necrosis was also observed. The representative growth index and the dry weight of 2 species were 50% higher than shade and the rate was reduced according to the decrease of light intensities. Total carbohydrate contents showed very similar changes to that of dry weight. However, any notable influences were observed at above the light intensities of 250~500${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in the half shade. The size of spikes and the earliest spiking appeared in the sun and the spike color was decolorized as decreased in light intensities, irrespective of species. Photosynthetic rate of 2 species was 2 times higher in the sun than those in the shade, and it showed the typical photoresponses of sun plant. Stomatal conductances and intercelluar $CO_2$ concetration showed similar changes to that of photosynthetic rate. On the contrary, vapor pressure deficit was increased more in the shade than in the sun.

Growth Reaction of Some Ground Cover Plant in Korean Native Greening according to Shading Levels (몇 가지 자생 지피식물의 차광에 따른 생장반응)

  • Kim, Gui Soon;Lee, Jeong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • The objective of this research was to select the native shade tolerance plant which grows well from landscape objective of the urban. Seven species native ground cover plants were evaluated on the growth and chloropyll under 0, 40, 60, 90% shading treatments. Hosta longipes was showed the quite good growth from 60% level of natural light. The plant growth of Liriope platyphylla was good within $144.2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ intensity which is 90% shade level of natural light. But, Dryiopteris crassirhizoma was judged with shade tolerance plant which grow quite well from shading condition level of 60% degree. Carex siderosticea was showed the highest plant length and plant width in 40% shading of natural light more than at conditon too much shading. Hosta longipes, Liriope platyphylla, Dryiopteris crassirhizoma, and Carex siderosticea were as shade tolerance plant with increases chlorophyll content well to overcome a light restrictive condition and is adapted to seem with the result.