• Title/Summary/Keyword: Length of penetration

Search Result 344, Processing Time 0.038 seconds

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector (LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구)

  • Choi, Young;Kim, Chang-Up;Oh, Seung-Mook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

Ultrastructure of the Epiphytic Sooty Mold Capnodium on Walnut Leaves

  • Kim, Ki Woo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.14-14
    • /
    • 2015
  • Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial leaf surface of a walnut tree. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to $30{\mu}m$, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of fungal complexes can be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

  • PDF

Durability Evaluation of a Composite Carbody for Korean Tilting Train under Repeated Loadings (반복하중을 받는 틸팅열차용 복합재 차체구조의 내구성 평가)

  • Jeong, Jong-Cheol;Seo, Sung-Il;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.39-44
    • /
    • 2007
  • This rafer explains a durability test of a large train car body made of carbon/epoxy composite material. The composite car body with the length of 23m was manufactured as a sandwich structure composed of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. In order to evaluate durability of the composite car body, it was excited by two 500kN capacity hydraulic actuators installed underneath the body bolster. The natural frequency of the composite car body under full weight condition was found to be 4.33Hz. Based on this result, the excitation frequency and displacement of 5Hz and ${\pm}1.0mm$, respectively, were used as inputs for the durability test. The test was conducted for $2{\times}10^6$ cycles. During the test, the nondestructive tests using X-ray radiography and dye penetration method was performed to determine the presence of the cracks. Upon completion of the test, no cracks were found.

INVESTIGATION ON SPRAY CHARACTERISTICS UNDER ULTRA-HIGH INJECTION PRESSURE CONDITIONS

  • LEE S. H.;JEONG D. Y.;LEE J. T.;RYOU H. S.;HONG K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • This article reports the experimental and numerical results for free sprays under ultra-high injection pressure conditions to give us better understandings of spray characteristics and also to make clear a limit pressure condition in diesel sprays. The high pressure injection system developed in this work is devised to reach ultra-high pressure conditions in the range from 150 MPa to 355 MPa. The free spray injected from a single nozzle injector is visualized by the Schlieren technique and the high speed camera. In particular, it is found that the shock waves are present and propagated along the edge of spray in the downstream direction. The measured spray penetration length increases gradually with the injection pressure, but its increasing rate is decreased as the injection pressure increases. The Sauter mean diameter is also no longer augmented for the injection pressures higher than 300 MPa. In addition, the three­dimensional numerical simulations are conducted for comparing the measurements with the predictions based on two different breakup models. The TAB model results show better agreements with experimental data than the WAVE model under ultra-high injection pressure conductions. Moreover, the simulation results show that the gas-phase pressure increases substantially in the vicinity of the spray tip region. It supports the experimental observation that the shock waves are formed at the front of spray tip and are propagated downstream.

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector (직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구)

  • Lee, Chang-Hui;Lee, Gi-Hyeong;Bae, Jae-Il;Baek, Seung-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

Study on Injection Response of Servo-Hydraulic Injector with Different Actuation Method (구동방식이 다른 서보유압형 인젝터의 분사응답성 연구)

  • Kwon, J.W.;Jeong, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, high-pressure injection characteristic of servo hydraulic injector as the key component of diesel CRDi system, which is driven by solenoid and piezo-actuator were examined by experimental analysis. High-pressure injection characteristic of standard diesel fuel injected at high pressure up to 160 MPa was investigated at high-pressure chamber by using a high-speed camera for spray visualization and quantitative analysis. By this study, we found that the piezo-driven injector has better performances in controlling the fuel injection with the high pressure, including fuel quantity, spray penetration length and spray velocity, than that of a solenoid-driven injector. In particular, the needle response time for start of injection in piezo-driven injector was faster of about $125{\mu}s$ than that of solenoid-driven injector. Consequently, it is known that the piezo-driven injector has more degrees of freedom in controlling the fuel injection with the high pressure than solenoid-driven injector.