• Title/Summary/Keyword: Length grader

Search Result 3, Processing Time 0.017 seconds

The Optimum Operating Conditions of Indented-Cylinder Length Grader to Remove Broken Rice based on Varietal Characteristics (벼 품종별 입형분리기 최적 가동조건)

  • Lee, Choon-Ki;Song, Jin;Yun, Jong-Tag;Seo, Jong-Ho;Lee, Jae-Eun;Kim, Jung-Tae;Jeong, Gun-Ho;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.366-374
    • /
    • 2009
  • To determine the optimum operating conditions of the indented cylinder length grader based on varietal characteristics, broken rice removal capabilities were measured on the milled rice of 41 varieties at different conditions consisted of 3 types of indented cylinders with different indent-opening diameters and 3 different collecting-angles of broken rice. The broken rice removal capabilities were swayed by the indent's opening diameter and depth as well as the angle of the collecting trough of broken rice on the point of instrument, and by the kernel length and width as well as 1000 grain weight of milled rice on the point of rice variety. When the angle of broken rice collecting-trough reached to near the horizontal center line of the indented cylinder on the direction of upward turning side, which was referred $0^{\circ}$ in this paper, the amount of rice collected in trough increased, whereas the loss of head rice also increased. Considering the removal rate of broken rice as well as loss of head rice, it was thought that the suitable angle of trough for broken rice collecting was located $5^{\circ}$ to $15^{\circ}$ depending on varietal characteristic and indent opening diameter. It was thought that 4.2 mm or more of indent opening diameter was recommendable for the rice varieties having heavier 1000 grain weight than 22.3g, as well as larger sizes than 2.9 and 5.2 mm in width and length of rice kernel, respectively; 3.8 mm for the small-sized thin kernels, and a proper diameter between 3.8 and 4.2 mm for short to middle kernels. The varieties with relatively shorter length compared to width of kernel were more difficult to separate the broken rice than the opposite ones. For effective separation of that, it seems that some specific indent shapes such as wider opening and shallow depth etc. are required. When the broken rice content were excessively high, wider diameters of indent openings than specified sizes were thought to be the better.

Analysis of Broken Rice Separation Efficiency of a Laboratory Indented Cylinder Separator

  • Kim, Myoung Ho;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Purpose: Using a laboratory indented cylinder separator, broken rice separation experiments were conducted and the characteristics of the separation process were studied to provide information for developing a prototype indented cylinder broken rice separator. Methods: Rice (Ilmi variety) milled in a local RPC was used for the experiment. Rice kernels were classified into four groups according to their length l; whole kernels (I > 3.75 mm), semi-whole kernels (2.5 < I < 3.75 mm), broken kernels (1.75 < I < 2.5 mm), and foreign matters (I < 1.75 mm). A laboratory grain cleaner, Labofix '90 (Schmidt AG, Germany) was used for the experiments. Experiments were designed as a $4{\times}4$ factorial arrangement in randomized blocks with three replications. Cylinder rotational speeds (17, 34, 51, 68 rpm) and trough angles (15, 37.5, 60, $82.5^{\circ}$) were the two factors and feed rates (25, 50 kg/h), indent shapes (Us, $S_1$ type), and indent sizes (2.5, 3.75 mm) were treated as the blocks. Two 125 g samples and one 125 g sample were taken at the cylinder outlet and from the trough, respectively. The whole, semi-whole, and broken kernel weight ratio of the samples and feed was determined by a rice sizing device. From these weight ratios, purities, degrees of extraction and coefficient of separation efficiency were calculated. Results: Trough angle, cylinder speed, and their interaction on the coefficient of separation efficiency were statistically significant. Cylinder speed of 17, 34, and 51 rpm made the most effective separation when the trough angle was $15^{\circ}$ or $37.5^{\circ}$, $60^{\circ}$, and $82.5^{\circ}$, respectively. Maximum values of coefficient of separation efficiency were in the range of 60 to 70% except when the indent size was 2.5 mm and were recorded for the combinations of low cylinder speed (17 rpm) with medium trough angle ($37.5^{\circ}$ or $60^{\circ}$). Indent shape did not appear to make any noticeable difference in separation efficiency. Conclusions: Due to the interaction effect, the trough angle needs to be increased appropriately when an increase in cylinder speed is made if a rapid drop of effectiveness of separation should be avoided. In commercial applications, $S_1$ type indents are preferred because of their better manufacturability and easier maintenance. For successful separation of broken kernels, the indent size should be set slightly bigger than the actual sizes of broken kernels: an indent size of 3.0 mm for separating broken kernels shorter than 2.5 mm.

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.