• Title/Summary/Keyword: Leisure Boat

Search Result 86, Processing Time 0.041 seconds

Initial Hull Form Development of Small-Size Coastal Leisure Boat (연안용 소형 레저선박의 초기선형 개발)

  • Jeong, Uh-Cheul;Park, Je-Woong;Koo, Jong-Do;Kim, Do-Jung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.192-197
    • /
    • 2003
  • Initial hull form of 3 G/T and $20{\sim}25$ knots class coastal leisure boat is newly developed. The performances, which are resistance, trim and sinkage, are investigated at high speed circulating water channel (CWC). Wave patterns are observed together to make clear the relation between the resistance performance and the wave characteristics.

  • PDF

A Study on Structural Strength Assessment of Polyethylene Boat (폴리에틸렌 보트의 구조강도 평가에 관한 연구)

  • Cho, Seok-Swoo;Kwak, Won-Min;Ham, Bum-Sik;Jo, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1045-1053
    • /
    • 2013
  • Boat or yacht hull has been built mainly by FRP composite materials. FRP boat hull manufacturing begins to be restricted after the year 2000 under international regulation on ocean environment safety. The alternative of FRP has been proposed by many boat builders and high strength aluminium is considered as its standard material. But high strength aluminium is very expensive as boat hull material. In this study, boat hull is considered to be built by high density polyethylene and its structural strength is estimated by longitudinal strength test method on small craft. Tensile strength of polyethylene boat hull material is higher than that of FRP boat hull material. But safety factor of polyethylene boat hull is more than that of FRP boat hull. These study results indicate structural integrity and quality control of polyethylene boat is better than those of FRP boat.

A Study on the Resistance Performance Under Hull Form of 18ft Leisure Boat with Carbon Composite Materials (탄소복합소재를 적용한 18ft급 레저보트의 수선하부 저항성능에 관한 연구)

  • Shin, Guk Hwan;Song, Jun Hee
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.350-356
    • /
    • 2021
  • When a ship with a planing line operates or turns in a straight line, the floating position and trim change according to the speed, and a large resistance is generated on the hull. In this paper, the resistance to a planing line was estimated through the computational fluid dynamics of a leisure boat with improved hull weight and durability by applying a carbon composite material to the hull. The resistance performance of the bow and stern of the 18ft class leisure boat was checked and the flow field of the entire vessel was estimated, and the stability of the planing line was confirmed by comparing the resistance of each trim through numerical analysis. In addition, it was confirmed that the designed planing line could withstand it sufficiently because the force applied to the hull was not large, and The stability of the boat was analyzed by calculating the wavelength of the wave and the length of the ship as the ratio of gravity to the inertial force and checking how much force the rolling occurred.

Designing of Safe Duct for Leisure Boat with Wing Section (익형 형상을 적용한 레저 선박용 안전 덕트 개발)

  • Sang-Jun Park;Jin-Wook Kim;Moon-Chan Kim;Woo-Seok Jin;Sa-Kyo Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

Basic Design of 40ft Class Pleasure Boat based on Digital Mock-up (디지털 목업 모델 기반 40ft 급 알루미늄 레저보트 설계)

  • Oh, Dae-Kyun;Lee, Kyung-Woo;Lee, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • As leisure boats become large-scaled and high value-added, their design requirements gradually get more complicated and accordingly their manufacturing processes get more complicated than those of existing ones. Leisure boat builders overseas make efforts to overcome this circumstance by establishing a 3-D model-based design system which is based on the concept of PLM. On the other hand, Korean shipbuilders still remain in the development process of traditional leisure boats which are mainly based on 2-D drawings. There have been some efforts made to have the 3-D model-based design system; however, they belong to a very early stage. This study carried out initial research to apply DMU technology to the development process of leisure boats. It established the design process based on a DMU model and proved its usefulness through a case study on the design of 40-ft class aluminum leisure boats.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Prediction of Effective Horsepower for G/T 4 ton Class Coast Fishing Boat Using Statistical Analysis (통계해석에 의한 G/T 4톤급 연안어선의 유효마력 추정)

  • Park, Chung-Hwan;Shim, Sang-Mog;Jo, Hyo-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.71-76
    • /
    • 2009
  • This paper describes a statistical analysis method for predicting a coast fishing boat's effective horsepower. The EHP estimation method for small coast fishing boats was developed, based on a statistical regression analysis of model test results in a circulating water channel. The statistical regression formula of a fishing boat's effective horsepower is determined from the regression analysis of the resistance test results for 15 actual coast fishing boats. This method was applied to the effective horsepower prediction of a G/T 4 ton class coast fishing boat. From the estimation of the effective horsepower using this regression formula and the experimental model test of the G/T 4 ton class coast fishing boat, the estimation accuracy was verified under 10 percent of the design speed. However, the effective horsepower prediction method for coast fishing boats using the regression formula will be used at the initial design and hull-form development stage.

A Study on Development of a Marine Docking System for Repair of a Small Coast-Boat (연안 소형선박 수리용 해상 상가시스템 개발)

  • Park, Chung-Hwan;Jang, Dong-Won;Yang, Hyang-Kweon;Jin, Jong-Ryung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.78-83
    • /
    • 2008
  • In recent years, small boats used for marine leisure have been steadily increasing because of the increase in national income and the desire for marine leisure. But the repair of such small boats in dry dock has pointed out many faults in small FRP-shipbuilding in terms if workspace and manpower. Lifting a boat from the water to land is done with a crane or by hand using a sling around the bottom of the boat. But dry dock work is limited by the scale of the boat, which corresponds to the crane capacity, with carelessness making it possible to capsize a boat and endanger life. The purpose of this study was the development of a marine docking system that would improve economical efficiency and safety, for which we carried out concept design, model tests, structural analysis, etc.

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

Restoring Characteristics of Windy Leisure Boat Associated to Sailing Angle of Attack and Effet of Side Force (풍력 레저선박의 돛 받음각과 횡력에 대한 복원력 특성)

  • Kang, Gyung Ju;Moon, Byung Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Characteristics of restoring force for the wind-powered leisure boat was investigated using mathematical formulation and commercial computational method such as the ANSYS Workbench CFX-Mesh. The objective is to find the restoring moment and heel moment while boat is sailing in windy power. Conditions for angle of attack were given from $5^{\circ}$ to $90^{\circ}$. It is known that side force is larger in terms of angle of attack is higher, however critical angle is suggested to limit before over of $60^{\circ}$ for safe navigation for boat in wind. Natural results are found that stronger heel moment is observed when sail is used than no sail, and higher angle of attack is induced stronger heel moment.