• Title/Summary/Keyword: Learning rate

Search Result 2,184, Processing Time 0.031 seconds

A Study on Technology Embedded English Classes Using QR Codes

  • Jeon, Young-Joo
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The development of information and technology has brought plenty of changes to the educational environment. The prevalence of smart phones is particularly playing a huge role in shaping learning methods. Smart phones provide the opportunity to scan QR codes, which can greatly ease access to information. Due to a high recognition speed, recognition rate, and restoration rate, they can be useful tools for English teachers to use in their class. In this study, we suggest using QR codes for writing and picture descriptions. Based on this study, more research should invest in Technology Embedded English teaching models to create better English classes for students.

Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • 김상민;한우용;이창구
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks (CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.

Virtual reference image-based video coding using FRUC algorithm (FRUC 알고리즘을 사용한 가상 참조 이미지 기반 부호화 기술 연구)

  • Yang, Fan;Han, Heeji;Choi, Haechul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.650-652
    • /
    • 2022
  • Frame rate up-conversion (FRUC) algorithm is an image interpolation technology that improves the frame rate of moving pictures. This solves problems such as screen shake or blurry motion caused by low frame rate video in high-definition digital video systems, and provides viewers with a more free and smooth visual experience. In this paper, we propose a video compression technique using deep learning-based FRUC algorithm. The proposed method compresses and transmits after excluding some images from the original video, and uses a deep learning-based interpolation method in the decoding process to restore the excluded images, thereby compressing them with high efficiency. In the experiment, the compression performance was evaluated using the decoded image and the image restored by the FRUC algorithm after encoding the video by skipping 1 or 3 pages. When 1 and 3 sheets were excluded, the average BD-rate decreased by 81.22% and 27.80%. The reason that excluding three images has lower encoding efficiency than excluding one is because the PSNR of the image reconstructed by the FRUC method is low.

  • PDF

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

An Enhancement of Learning Speed of the Error - Backpropagation Algorithm (오류 역전도 알고리즘의 학습속도 향상기법)

  • Shim, Bum-Sik;Jung, Eui-Yong;Yoon, Chung-Hwa;Kang, Kyung-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1759-1769
    • /
    • 1997
  • The Error BackPropagation (EBP) algorithm for multi-layered neural networks is widely used in various areas such as associative memory, speech recognition, pattern recognition and robotics, etc. Nevertheless, many researchers have continuously published papers about improvements over the original EBP algorithm. The main reason for this research activity is that EBP is exceeding slow when the number of neurons and the size of training set is large. In this study, we developed new learning speed acceleration methods using variable learning rate, variable momentum rate and variable slope for the sigmoid function. During the learning process, these parameters should be adjusted continuously according to the total error of network, and it has been shown that these methods significantly reduced learning time over the original EBP. In order to show the efficiency of the proposed methods, first we have used binary data which are made by random number generator and showed the vast improvements in terms of epoch. Also, we have applied our methods to the binary-valued Monk's data, 4, 5, 6, 7-bit parity checker and real-valued Iris data which are famous benchmark training sets for machine learning.

  • PDF

Learning Module Design for Neural Network Processor(ERNIE) (신경회로망칩(ERNIE)을 위한 학습모듈 설계)

  • Jung, Je-Kyo;Kim, Yung-Joo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.

  • PDF

Study on Derivation and Implementation of Quantized Gradient for Machine Learning (기계학습을 위한 양자화 경사도함수 유도 및 구현에 관한 연구)

  • Seok, Jinwuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • A derivation method for a quantized gradient for machine learning on an embedded system is proposed, in this paper. The proposed differentiation method induces the quantized gradient vector to an objective function and provides that the validation of the directional derivation. Moreover, mathematical analysis shows that the sequence yielded by the learning equation based on the proposed quantization converges to the optimal point of the quantized objective function when the quantized parameter is sufficiently large. The simulation result shows that the optimization solver based on the proposed quantized method represents sufficient performance in comparison to the conventional method based on the floating-point system.

A Two Stage Game Model for Learning-by-Doing and Spillover (지식의 학습효과와 파급효과에 따른 선.후발기업의 생산전략 분석)

  • 김도환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • This paper presents a two stage game model which examines the effect of learning-by-doing and spillover. Increases in the firm’s cumulative experience lower its unit cost in future period. However, the firm’s rival also enjoys the experience via spillover. Unlike previous theoretical research model, a cost asymmetric market entry game model is developed between the incumbent firm and new entrant. Mathematical results show that the incumbent firm exploits the learning curve to gain future cost advantage, and that the diffusion of learning to the new entrant induces the incumbent firm to choose decreasing output strategically. As a main result, we show that the relative magnitude between the learning and spillover rate determines the market share ratio of competing firms.

  • PDF