• Title/Summary/Keyword: Learning climate

Search Result 296, Processing Time 0.03 seconds

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture (농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사)

  • Seonho Khang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

Wine quality prediction analysis using machine learning (머신러닝을 이용한 와인 품질 예측분석)

  • Kim, Min-Seung;Jeong, Jae-hyeon;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.690-693
    • /
    • 2022
  • In this study, we used wine data to perform correlation analysis on factors that affect wine quality, and predicted wine quality standards based on the results. The dataset used in this study used data from 1599 red wines and 4898 white wines produced in Vinho verde, Portugal, for a total of 6497. The variable items are 12 kinds of component variables that represent wine components through physical and chemical analysis tests, a total of 1599 observations, and a total of one of the representative wines of the three major wine producing regions in the world (France, Italy, Spain). Added 3 pieces. Analysis was made by applying national climate change data.

  • PDF

Development of Non-stationary Rainfall Simulation Method using Deep-learning Technique and Bigdata (기상 빅데이터와 딥러닝 기술을 활용한 비정상성 강우량 모의 기법 개발)

  • So, Byung-Jin;Kim, Jang Gyeong;Oh, Tae-Suk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.185-185
    • /
    • 2020
  • 기후변화의 영향으로 국지적 규모의 홍수, 가뭄 등의 피해 규모가 증가하고 있으며, 복사에너지 변화에 기인한 전지구적 대류활동의 변화는 단발성 피해에 확산되어 특정 지역의 기후 패턴 변화로 이어질 수 있다. 대류활동의 변화는 국가별 물순환의 변화로 이어질 수 있으며, 이로 인한 수자원의 변동성은 국가적 수자원 이용에 있어 중요한 요소로 작용될 수 있다. 수자원의 중요성으로 인해 국제적인 기관들은 전지구적 대류활동에 기인한 물순환 과정을 파악하고자 노력하였으며, 그 일환으로 GCMs (Global climate modeling) 등과 같은 모형이 개발되었고, 위성을 통한 전지구 강우량 측정망을 구축하였다. 위성을 통한 전구 강우량 자료와 GCMs에서 산출된 대류과정과 연관된 기후변량 자료들은 빅데이터로 구축되어 제한 없이 제공되고 있다. 정상성 강우 모의 기법은 데이터에 한정된 패턴을 반영하는 모형들로서 기후변화로 인한 기후 변동성 증가를 반영하는데 한계가 존재한다. 본 연구에서는 기상 빅데이터 자료를 기반으로 한반도의 강우량과 기상학적 특성을 연관할 수 있는 머신러닝의 일종인 딥러닝 방법을 접목시킨 강우 모의 기법을 적용하였다. 본 연구의 모형은 기후변화로 인한 기상학적 패턴의 변화를 딥러닝 기법을 통해 식별하고 식별된 기상학적 특성에 기반한 한반도의 강우량을 모의할 수 있다. 본 모형은 단기 및 장기 예측 모형과 결합하여 불확실성을 고려한 단/장기 강우량 평가에 활용될 수 있을 것으로 기대된다.

  • PDF

Education Service Standard Model of Smart Farming based on Network (네트워크 기반 스마트 농업을 위한 교육 서비스 표준모델)

  • Kim, Dong Il;Chung, Hee Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.287-289
    • /
    • 2021
  • Smart farming education service based on network are important factors for farming sector. The lack of time and space has to lead to their limited appliance to farmers. Limited information support and low background knowledge in farming production is a lot of trial and error in farming production. Smart farming education as a service based on cloud provide the farming information that is the farming knowledge, farming skill, and farmer's experiences and knowhow, etc. And real-time information such as climate change, soil environment and market trends is very important. This paper proposes a framework for applying farming education service based on cloud. It consists of smart farming function and smart farming education function

  • PDF

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

A Study on the Positioning Strategy of Wood Cultural Experience Center

  • Kyungrok WON;Jinwoong BYEON;Dowoong YOON;Jonghye PARK;Hanmin PARK;Heeseop BYEON
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.175-190
    • /
    • 2024
  • The increase in atmospheric carbon dioxide concentrations is known to be closely associated with climate change and global warming. In this sense, considering that facilities for appropriate education and experience on wood, which is a carbon pool, have been required, this study targets the Wood Cultural Experience Centers, which are in current operation, examines and evaluates their operation status and policy changes, and ultimately derives a successful positioning plan. To this end, it conducts a survey, and the results are as follows. First, as a result of the similarity analysis (KYST: Kruskal-Young-Shepard-Torgerson program) with facilities with leisure activities and educational functions, the Wood Cultural Experience Center have competition with natural recreation forests in terms of naturalness, and it has competition with the career experience center and youth training center in terms of experiential observation. Second, the result of positioning analysis of the attribute space map indicates that the Wood Cultural Experience Center is positively perceived in terms of such attributes as naturalness, experiential learning or recreation, and preservation of natural environment, but is negatively recognized in terms of accessibility, escape from daily life, and things to see.