• Title/Summary/Keyword: Learning characteristic

Search Result 587, Processing Time 0.028 seconds

Exploring Support Vector Machine Learning for Cloud Computing Workload Prediction

  • ALOUFI, OMAR
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.374-388
    • /
    • 2022
  • Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

Classification of mandibular molar furcation involvement in periapical radiographs by deep learning

  • Katerina Vilkomir;Cody Phen;Fiondra Baldwin;Jared Cole;Nic Herndon;Wenjian Zhang
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.257-263
    • /
    • 2024
  • Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.

이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구 (A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

사용자 특성에 적응하는 새로운 지능 제어 시스템 (Adaptive Artificial Intelligent illuminator for User′s Characteristic)

  • 정지원;유석용;손동설;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.361-369
    • /
    • 1999
  • 본 논문에서는 플랜트를 사용하는 사용자의 특성을 인공지능을 통하여 학습하여 사용자의 특성에 적응하도록 하는 새로운 지능 제어 시스템을 제안한다. 사용된 인공지능은 신경 회로망이며, 그 중에서도 LVQ(learning Vector Quantization) 네트워크를 사용한다. 제안한 방식의 성능을 확인하기 위하여 IBM PC 상에서 Matlab을 통하여 시뮬레이션 한다.

  • PDF

Support Vector Machine에 대한 커널 함수의 성능 분석 (Performance Analysis of Kernel Function for Support Vector Machine)

  • 심우성;성세영;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

A Consideration on Load Disturbance Characteristics of Realtime Adaptive Learning Controller based on an Evolutionary algorithms - Application to an Electro Hydraulic Servo System

  • Sung-Ouk;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.176.3-176
    • /
    • 2001
  • Hydraulic servo system has the characteristic of high power in itself, as combining its characteristics with excellent electro equipment that comes from the development of electronics, electro-hydraulic servo system is widely used in industry that are requested high precision and power Electro-hydraulic servo system is characteristic of very strong non-linearity in itself and it is mainly applied the field of the inner or outer fluctuating load or disturbance in industry. Evolutionary computation based on the natural evolutionary process may solve many engineering problems. Algorithms can represent the natural selection in crossovers, mutations, production of the offspring, selection, etc. Nature has already shown is the superiority through ...

  • PDF

직류시보전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계 (Design of Neuro-Fuzzy Controller for Speed Control Applied to DC Servo Motor)

  • 김상훈;강영호;고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권2호
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, a neuro-fuzzy controller which has the characteristic of fuzzy control and artificial neural network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to fuzzy rules are created by an expert. To adapt the more precise model is implemented by error back-propagation learning algorithm to adjust the link-weight of fuzzy membership function in the neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of the proposed algorithm designed above, an operating characteristic of a DC servo motor with variable load is investigated.

인공 신경망의 패턴분석에 근거한 지능적 부품품질 관리시스템의 설계 (Design of Intelligent Material Quality Control System based on Pattern Analysis using Artificial Neural Network)

  • 이장희;유성진;박상찬
    • 품질경영학회지
    • /
    • 제29권4호
    • /
    • pp.38-53
    • /
    • 2001
  • In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.

  • PDF

뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어 (Speed control of AC Servo Motor with Neuro-Fuzzy Controller)

  • 김종현;김상훈;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF