• Title/Summary/Keyword: Learning capability

Search Result 685, Processing Time 0.028 seconds

A Ship Intelligent Anti-Collision Decision-Making Supporting System Based On Trial Manoeuvre

  • Zhuo, Yongqiang;Yao, Jie
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.176-183
    • /
    • 2006
  • A novel intelligent anti-collision decision-making supporting system is addressed in this paper. To obtain precise anti-collision information capability, an innovative neurofuzzy network is proposed and applied. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to train the parameters of the Fuzzy Inference System (FIS). The learning process is based on a hybrid learning algorithm and off-line training data. The training data are obtained by trial manoeuvre. This neurofuzzy network can be considered to be a self-learning system with the ability to learn new information adaptively without forgetting old knowledge. This supporting system can decrease ship operators' burden to deal with bridge data and help them to make a precise anti-collision decision.

  • PDF

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

Machine learning-based Multi-modal Sensing IoT Platform Resource Management (머신러닝 기반 멀티모달 센싱 IoT 플랫폼 리소스 관리 지원)

  • Lee, Seongchan;Sung, Nakmyoung;Lee, Seokjun;Jun, Jaeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a machine learning-based method for supporting resource management of IoT software platforms in a multi-modal sensing scenario. We assume that an IoT device installed with a oneM2M-compatible software platform is connected with various sensors such as PIR, sound, dust, ambient light, ultrasonic, accelerometer, through different embedded system interfaces such as general purpose input output (GPIO), I2C, SPI, USB. Based on a collected dataset including CPU usage and user-defined priority, a machine learning model is trained to estimate the level of nice value required to adjust according to the resource usage patterns. The proposed method is validated by comparing with a rule-based control strategy, showing its practical capability in a multi-modal sensing scenario of IoT devices.

Learning Assembly Strategies for Chamferless Parts (학습적 방법에 의한 챔퍼없는 부품의 조립에 관한 연구)

  • Ahn, D.S.;Kim, S.Y.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.175-181
    • /
    • 1993
  • In this paper, a practical method to generate task strategies applicable to chamferless and high-precision assembly, is proposed. The difficulties in devising reliable assembly strategies result from various forms of uncertainty such as imperfect knowledge on the parts being assembled and functional limitations of the assembly devices. In approach to cope with these problems, the robot is provided with the capability of learning the corrective motion in response to the force signal trrough iterative task execution. The strategy is realized by adopting a learning algorithm and represented in a binary tree type database. To verify the effectiveness of the proposed algorithm, a series of simulations and experiments are carried out under assimilated real production environments. The results show that the sensory signal-to-robot action mapping can be acquired effectively and, consequently, the chamferless assembly can be performed successfully.

  • PDF

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Development of An Expert system with Knowledge Learning Capability for Service Restoration of Automated Distribution Substation (고도화된 자동화 변전소의 사고복구 지원을 위한 지식학습능력을 가지는 전문가 시스템의 개발)

  • Ko Yun-Seok;Kang Tae-Gue
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.637-644
    • /
    • 2004
  • This paper proposes an expert system with the knowledge learning capability which can enhance the safety and effectiveness of substation operation in the automated substation as well as existing substation by inferring multiple events such as main transformer fault, busbar fault and main transformer work schedule under multiple inference mode and multiple objective mode and by considering totally the switch status and the main transformer operating constraints. Especially inference mode includes the local minimum tree search method and pattern recognition method to enhance the performance of real-time bus reconfiguration strategy. The inference engine of the expert system consists of intuitive inferencing part and logical inferencing part. The intuitive inferencing part offers the control strategy corresponding to the event which is most similar to the real event by searching based on a minimum distance classification method of pattern recognition methods. On the other hand, logical inferencing part makes real-time control strategy using real-time mode(best-first search method) when the intuitive inferencing is failed. Also, it builds up a knowledge base or appends a new knowledge to the knowledge base using pattern learning function. The expert system has main transformer fault, main transformer maintenance work and bus fault processing function. It is implemented as computer language, Visual C++ which has a dynamic programming function for implementing of inference engine and a MFC function for implementing of MMI. Finally, it's accuracy and effectiveness is proved by several event simulation works for a typical substation.

The failure case of the knowledge transfer in an international joint venture : focusing on car engine control system (국제 합작회사의 지식이전 실패사례 연구: 자동차 엔진제어시스템 기술을 중심으로)

  • Yoo, Hyeongjune;Ahn, Joon Mo
    • Journal of Technology Innovation
    • /
    • v.29 no.2
    • /
    • pp.1-30
    • /
    • 2021
  • Recent years have witnessed various attempts of firms to acquire new knowledge. Purchasing intellectual property or merger and acquisition (M&A) can be such attempts, but joint venture can also be an effective way internalizing new complementary assets from external partners. However, due to difficulties in the formation and implementation of learning strategies, many joint ventures have failed to acquire necessary knowledge. In this respect, based on contingency theory and dynamic capability, the current research aims to investigate the failure case of knowledge transfer in an international joint venture - KEFICO established by Hyundai motors and BOSCH. Case firm optimized for hardware technology but did not establish a differentiated learning strategy and organizational structure to acquire software skills, which are intellectuals of different natures. Due to this inconsistency, it was not able for KEFICO to absorb new type of knowledge (skills related to engine control system). This study suggests the theoretical framework illustrating the case and provides some important implications for organizational learning.

Analysis of the Government's Introduction to Artificial Intelligence(AI): Focusing on the Central Government Organizations (정부의 인공지능 도입에 관한 분석: 중앙정부조직을 중심으로)

  • Han, MyungSeong
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 2022
  • The necessity for introducing artificial intelligence(AI) into the public sector to form an intelligent government has been emerging. This study set 'Organizational Agility', 'Exploitation & Exploration Learning', and 'E-government Capability' as independent variables for the introduction of AI in central government. Dependent variables were set on whether AI was adopted in the central government organization 'Bu(mainly conducts policy planning)', and 'Cheong(mainly performs policy execution)'. Logistic regression analysis was performed on each of the two models. As a result, it was derived that ministry Bu adopted AI as organizational agility increased, and ministry Chung adopted AI as e-government capability increased. Particularly, it was identified that the effect of exploitation learning for Cheong organizations offset the influence of AI introduction according to e-government capabilities, while exploratory organizational learning facilitated the AI introduction. This study is meaningful for suggesting a strategy for adopting AI in government.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.