Journal of the Korean Institute of Intelligent Systems
/
v.14
no.6
/
pp.693-698
/
2004
In this paper, an iterative learning control method is applied to suppress a vibration of a 2-mass system which has a flexible coupling between a load and a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type iterative learning control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration even when there exist model uncertainties. A modification to the learning law is also Presented to suppress undesired effects of an initial position error, The simulation results show the effectiveness of the proposed learning method.
ILC(Iterative Learning Control: 이하 ILC)는 현재 기계, 전기, 화학 등 많은 분야에 널리 적용되고 있다. ILC는 특히 반복적인 trajectory tracking Control 문제에 아주 효과적인 방법 중의 하나이다. 하지만 ILC는 메모리 기반의 scheme로서 trajectory tracking을 위해서는 많은 메모리를 요구하게 된다. 한편, 자세한 관찰에 의하면 인간의 팔, 다리 등의 관절의 움직임은 아주 정확하지가 않다. 이러한 사실로 미루어 인간이 정화한 모션을 취하는데 드는 비용을 줄이고자 모션 명령을 간단히 한다는 가정을 추론 해 낼 수 있다. 이러한 가정에 기초하여 우리는 ILC 명령을 간단히 하기 위해서 약간의 trajectory tracking의 정확성을 회생하는 메커니즘을 제안한다. 간단해진 ILC 명령은 적은 메모리 공간에 저장될 것이다. 또한, 로봇의 trajectory tracking을 위한 기존의 방법들은 아주 복잡할 뿐만 아니라 하나의 task의 수행만이 가능할 뿐 어떤 일반화의 방법도 제시하지 못하고 있다. 그래서 본 논문에서는 ILC 명령의 scaling에 대한 메커니즘을 제공하여 하나의 trajectory에 대해서 비슷한 모양이지만 다른 크기와 속도를 가지는 trajectory를 구현 할 수 있도록 하였다.
Journal of Institute of Control, Robotics and Systems
/
v.9
no.6
/
pp.435-441
/
2003
This paper addresses that an approximation and tracking control of realtime recurrent neural networks(RTRN) using two-dimensional iterative teaming algorithm for an electro-hydraulic servo system. Two dimensional learning rule is driven in the discrete system which consists of nonlinear output fuction and linear input. In order to control the trajectory of position, two RTRN with the same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two identical RTRN was very effective to trajectory tracking of the electro-hydraulic servo system.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.244-248
/
1996
Nowadays, most shop floors using industrial robots have many problems such as constructing robot workcell, generating robot arm moving trajectory, etc.. In the case of programming robot-arms for a specific task, shop operator commonly use the teach pendant to record the target position and determine the moving trajectory. However, such a teaching process may result in an inefficient trajectory in the sense of moving distance and joint angle fluctuation. Moreover, shop operators who have little knowledge about robot programming process need a lot of learning time and cost. The purpose of this paper is to propose a user friendly robot programming method to program robot-arms easily and efficiently for shop operator so that the programming time is reduced and a short and stable trajectory is obtained.
Journal of Advanced Marine Engineering and Technology
/
v.38
no.10
/
pp.1281-1286
/
2014
This paper presents an iterative learning control (ILC) approach for tracking problems with specified data points that are desired points at certain time instants. To design ILC systems for such problems, unlike traditional ILC approaches, an algorithm which updates not only the control signal but also the reference trajectory at each trial will be developed. The relationship between the reference trajectory and ILC control in tracking problems where there are specified data points through which the system should pass is investigated as the rate of convergence. In traditional ILC, the desired data is stored in a tracking profile file. Due to the huge size of the data file containing the target points, it is important to reduce the computational cost. Finally, simulation results of the presented technique are mentioned and compared to other related works to confirm the effectiveness of proposed scheme.
Park, Hyun-Jun;Choi, WeDong;Jang, Seung-Ho;Hong, Jeong-Mo
Journal of Korea Multimedia Society
/
v.21
no.8
/
pp.969-981
/
2018
Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.
Journal of the Korean Society of Industry Convergence
/
v.18
no.4
/
pp.259-266
/
2015
This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.
Kim, Moon Jong;Choi, Ki Chang;Oh, Byong Hwa;Yang, Ji Hoon
KIPS Transactions on Software and Data Engineering
/
v.3
no.9
/
pp.369-374
/
2014
Path generation methods are required for safe and efficient driving in unmanned autonomous vehicles. There are two kinds of paths: global and local. A global path consists of all the way points including the source and the destination. A local path is the trajectory that a vehicle needs to follow from a way point to the next in the global path. In this paper, we propose a novel method for local path generation through machine learning, with an effective curve function used for initializing the trajectory. First, reinforcement learning is applied to a set of candidate paths to produce the best trajectory with maximal reward. Then the optimal steering angle with respect to the trajectory is determined by training an artificial neural network. Our method outperformed existing approaches and successfully found quality paths in various experimental settings, including the cases with obstacles.
Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.
Journal of Advanced Marine Engineering and Technology
/
v.38
no.10
/
pp.1303-1309
/
2014
In this paper, we present an iterative learning control (ILC) framework for tracking problems with predefined data points that are desired points at certain time instants. To design ILC systems for such problems, a new ILC scheme is proposed to produce output curves that pass close to the desired points. Unlike traditional ILC approaches, an algorithm will be developed in which the control signals are generated by solving an optimal ILC problem with respect to the desired sampling points. In another word, it is a direct approach for the multiple points tracking ILC control problem where we do not need to divide the tracking problem into two steps separately as trajectory planning and ILC controller.The strength of the proposed formulation is the methodology to obtain a control signal through learning law only considering the given data points and dynamic system, instead of following the direction of tracking a prior identified trajectory. The key advantage of the proposed approach is to significantly reduce the computational cost. Finally, simulation results will be introduced to confirm the effectiveness of proposed scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.