• 제목/요약/키워드: Learning Speed

검색결과 1,174건 처리시간 0.032초

Exploring the Characteristics of STEAM Program Developed by Docents and its educational impact in the Natural History Museum

  • Park, Young-Shin;Park, Jin-Hee;Ryu, Hyo-Suk
    • 대한지구과학교육학회지
    • /
    • 제7권1호
    • /
    • pp.75-90
    • /
    • 2014
  • The purpose of this study was to explore the characteristics of STEAM program developed and implemented by two docents and its educational impact for the use of natural history museum. Two docents developed this program with the help of science educators who ran five times of workshop during five months. The STEAM program implemented in the natural history museum demonstrated the following characteristics. The exhibitions in museum were reached by visitors only for learning science concepts (S) out of five components in STEAM. The other components, T (technology) and E (engineering), were delivered through lectures in the room, not exhibition hall. M (Mathematics)was achieved by guessing the animal's size, or calculating the walking or running speed with the clue of foot prints. The three phases of STEAM program (presentation of context, creatively design the investigation, and emotional touch) were explicitly implemented but partially successful. Two docents participating in this study responded that they formed new or extended the understandings about STEAM education, but they had the difficulties in implementing STEAM program for various type of visitors. All visitors who participated in this study displayed the favorable responses in educational impact by STEAM program in natural history museum. The heavier emphasis on E and T of STEAM program is recommended through community-based learning. In addition, educator professional program through which docents can bridge theory into practice is suggested for revitalization of STEAM education.

서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적 (Object Detection and Tracking using Bayesian Classifier in Surveillance)

  • 강성관;최경호;정경용;이정현
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.297-302
    • /
    • 2012
  • 본 논문은 이미지 상황분석을 기반으로 하여 객체 검출 및 추적 방법을 제안한다. 제안하는 방법은 배경이 복잡한 형태이거나 배경이 동적으로 움직일 때에도 일관성 있는 결과를 얻을 수 있다. 입력 영상의 상황분석은 K-means와 RBF의 하이브리드 네트워크를 이용하여 수행되어진다. 제안된 객체 검출은 일정하지 않은 객체 이미지 때문에 생기는 영향을 감소시키기 위해 상황 기반 적응적 베이지안 네트워크를 이용한다. 본 논문에서는 학습 속도를 높이기 위해 2D Haar 웨이블릿 변형을 이용한 특징 벡터 생성기와 베이지안 판별식 방법을 이용하여 학습 시간이 적게 걸리며 학습 데이터의 변화에 일정한 성능을 갖는 방법론을 제안하였다. 제안하는 방법을 개발하여 실환경에 적용한 결과 검출하고자 하는 물체가 예측 영역을 넘나들거나 다른 불확실한 변화에도 안정적으로 반응함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.

QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘 (An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement)

  • 김이슬;홍성준;정성욱;임경식
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

DNN 모델을 이용한 기계 학습 기반 k-최근접 질의 처리 최적화 기법 (k-NN Query Optimization Scheme Based on Machine Learning Using a DNN Model)

  • 위지원;최도진;이현병;임종태;임헌진;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제20권10호
    • /
    • pp.715-725
    • /
    • 2020
  • 본 논문에서는 고차원의 특징 벡터에서 질의와 가장 가까운 k개의 데이터를 찾는 k-최근접 질의 최적화 방법을 제안한다. k-최근접 질의는 k개의 데이터를 포함할 가능성이 있는 범위를 기반으로 범위 질의로 변환되어 처리하는 기법이다. 본 논문에서는 처리 비용을 감소시키고 검색 속도를 가속화 할 수 있는 최적의 범위를 도출하기 위해 k-최근접 질의 처리 시 DNN 모델을 이용한 최적화 기법을 제안한다. 제안하는 기법은 온라인 모듈과 오프라인 모듈로 구성된다. 온라인 모듈에서는 클라이언트로부터 요청을 받아 실제 질의를 처리한다. 오프라인 모듈에서는 과거 최적화 기법의 결과를 학습 로그로 사용한 DNN 모델로 최적의 범위를 도출하고 온라인 모듈로 전달한다. 제안하는 기법의 우수성 및 타당성의 입증을 위하여 다양한 성능 평가를 수행한다.

적응적 탐색 전략을 갖춘 계층적 ART2 분류 모델 (Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy)

  • 김도현;차의영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.649-658
    • /
    • 2003
  • 본 연구에서는 ART2 신경회로망의 성능을 개선하기 위한 계층적 구조를 제안하고, 구성된 클러스터에 대하여 적합도(fitness) 선택을 통한 빠르고 효과적인 패턴 분류 모델(HART2)을 제안한다. 본 논문에서 제안하는 신경회로망은 비지도 학습을 통하여 대략적으로 1차 클러스터를 형성하고, 이 각각의 1차 클러스터로 분류된 패턴에 대해 지도학습을 통한 2군 클러스터를 생성하여 패턴을 분류하는 계층적 신경회로망이다. 이 신경회로망을 이용한 패턴분류 과정은 먼저 입력패턴을 1차 클러스터와 비교하여 유사한 몇 개의 1차 클러스터를 적합도에 따라 선택한다. 이때, 입력패턴과 클러스터들간의 상대 측정 거리비에 기반한 적합도 함수를 도입하여 1차 클러스터에 연결된 클러스터들을 Pruning 함으로써 계층적인 네트워크에서의 속도 향상과 정확성을 추구하였다. 마지막으로 입력패턴과 선택된 1차 클러스터에 연결된 2차 클러스터와의 비교를 통해 최종적으로 패턴을 분류하게 된다. 본 논문의 효율성을 검증하기 위하여 22종의 한글 및 영어 글꼴에 대한 숫자 데이타를 다양한 형태로 변형시켜 확장된 테스트 패턴에 대하여 실험해 본 결과 제안된 신경회로망의 패턴 분류 능력의 우수함을 증명하였다

일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측 (Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation)

  • 신동하;박준호;김창복
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.643-650
    • /
    • 2017
  • 무한한 에너지원을 가진 태양광 발전은 기상 에 의존하기 때문에 발전량이 매우 간헐적이다. 따라서 태양광 발전량의 불확실성을 줄이고 경제성을 향상시키기 위하여 정확한 발전량 예측기술이 필요하다. 기상청은 3일간 기상정보를 예보하지만 태양광 발전 예측에 높은 상관관계가 있는 일조량과 일사량은 예보하지 않는다. 본 연구에서는 기상청에서 3일간 예보하는 기상요소인 기온, 강수량, 풍향, 풍속, 습도, 운량 등을 이용하여, 일조 및 일사량을 예측하였으며, 예측된 일사 및 일조량을 이용하여, 실시간 태양광 발전량을 예측하는 딥러닝 모델을 제안하였다. 결과로서 예측된 기상요소로 발전량을 예측하는 모델보다 제안 모델이 MAE, RMSE, MAPE 등의 오차율 지표에서 더 좋은 결과를 보여주었다. 또한, 기계 학습의 한 종류인 서포트 벡터 머신을 사용하는 것보다 DNN을 사용하는 것이 더 낮은 오차율 지표를 보여주었다.

이동 객체 좌표의 시간적 히스토그램 기반 행동패턴분석시스템 (Behavior Pattern Analysis System based on Temporal Histogram of Moving Object Coordinates.)

  • 이재광;이규원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.571-575
    • /
    • 2015
  • 실시간으로 입력되는 영상으로부터 이동객체의 움직임 특징을 분석하는 시간적 히스토그램 기반의 행동패턴분석 알고리즘을 제안한다. 이동객체의 추적 및 분석을 위해 배경과 이동객체를 분리하는 배경학습을 행한다. 배경학습으로 추출된 이동객체는 무게중심 및 좌표연관성을 이용하여 객체를 식별한 후 객체별 추적을 행한다. 추적된 각 객체의 시작프레임, 종료프레임, 좌표정보, 크기정보를 연결리스트에 저장하여 관리한다. 시간적 히스토그램은 x, y좌표와 시간을 이용해 움직임 특징 패턴을 정의한 것으로 각 객체의 좌표정보와 비교하여 움직임특징 및 행동패턴을 파악한다. 시간적 히스토그램 기반 행동패턴분석시스템은 자체 수집한 데모영상에 대한 실험을 통해 초당 45~50 fps의 높은 처리속도를 유지하며 95%이상의 높은 추적율을 확인하였다.

  • PDF

온라인 학습을 이용한 비전 기반의 차량 검출 및 추적 (Vision-Based Vehicle Detection and Tracking Using Online Learning)

  • 길성호;김경환
    • 한국통신학회논문지
    • /
    • 제39A권1호
    • /
    • pp.1-11
    • /
    • 2014
  • 본 논문에서는 추적중인 차량의 외형 변화에 대해 온라인 학습 능력이 있는 비전 기반의 차량 검출 및 추적 시스템을 제안한다. 제안하는 시스템은 새로 검출된 차량의 연속된 프레임 간 움직임을 빠르고 강건하게 추정하기 위해 특징점 기반 추적 방법을 사용한다. 동시에 추적중인 차량에 대해 온라인 차량 검출기를 훈련시키고, 일시적인 차량 추적 실패 시 검출기의 결과를 이용해 추적기를 재초기화하여 강건한 추적을 가능하게 한다. 특히 차량 외형 모델의 업데이트 방법을 개선하여 시스템의 추적 성능을 높이고 처리시간을 단축시켰다. 다양한 주행환경에서 획득한 데이터세트를 사용하여 제안하는 시스템의 차량 검출 및 추적 성능을 평가하였다. 특히 우천 및 터널통과와 같은 악조건에서 기존의 방법에 비해 차량 추적 성능이 상당히 개선된 것을 증명하였다.

가상원격교육체제의 질 관리를 위한 평가모형의 개발 (Development of Quality Assurance Model and Guiding Principles for Effective Cyber Education)

  • 안미리;김미량
    • 컴퓨터교육학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 2001
  • 가상공간이 교수-학습 목적의 가능성을 인정받아감에 따라 가상원격교육체제에의 관심이 집중되고 있다. 2001년 3월 학위를 수여하는 원격대학의 정식개교를 앞두고 가상원격의 방법으로 진행되는 교육에 대한 기대가 팽배해 있는가 하면 동시에 그 교육의 질에 대한 우려가 강하게 제기되고 있는 것 또한 사실이다. 이에 본 연구는 교육의 새로운 환경으로 빠르게 성장해가고 있는 가상원격교육체제의 질을 총체적으로 관리, 평가할 수 있는 준거모형을 5개 영역으로 구분하여 개발, 제시해 보았다. 새롭게 부각되고 있는 가상원격교육체제의 질 관리를 위한 평가 준거의 정립은 매우 중요함에도 그 동안 새로운 체제를 평가할 수 있는 통합적 모형이 미비했음을 감안하면 가상원격교육체제의 평가에 이론적 기초가 되는 본 평가모형의 구안은 체제의 총체적 평가 및 질 관리에 유용한 지침을 제공해 줄 것으로 판단된다.

  • PDF

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권4호
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.