• 제목/요약/키워드: Learning Speed

검색결과 1,174건 처리시간 0.028초

멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출 (Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN)

  • 신현식;김형원;홍상욱
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.367-373
    • /
    • 2022
  • 딥러닝 기반 자율 주행 기술이 발전함에 따라 다양한 목적의 인공지능 모델이 연구되었다. 연구된 여러 모델들을 동시에 구동하여 자율주행 시스템을 개발한다. 그러나 동시에 인공지능 모델을 사용하면서 많은 하드웨어 자원 소비가 증가한다. 이를 해결하기 위해 본 논문은 백본 모델을 공유하며 다중 태스크를 고속으로 수행할 수 있는 Multi-Task CNN 모델을 제안한다. 이를 통해 AI모델을 사용하기 위한 백본 수의 증가를 해결할 수 있었습니다. 제안하는 CNN 모델은 기존 모델 대비 50% 이상 웨이트 파라미터 수를 감소시키며, 3배 이상의 FPS 속도를 향상시켰다. 또한, 차선인식은 Instance segmentation 기반으로 차선검출 및 차선별 Labeling을 모두 출력한다. 그러나 기존 모델에 비해 정확도가 감소하는 부분에 대해서는 추가적인 연구가 필요하다.

EfficientNet 활용한 딸기 병해 진단 서비스 (Strawberry disease diagnosis service using EfficientNet)

  • 이창준;김진성;박준;김준영;박성욱;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.26-37
    • /
    • 2022
  • 본 논문에서는 시설재배 작물 중 딸기의 초기 병해를 방제하고자 이미지를 자동으로 취득하고, EfficientNet 모델을 활용해 병해를 분석하여 농민에게 병해 여부를 알려주고, 전문가를 통한 병해 진단 서비스를 제안한다. 딸기 생육단계의 이미지를 취득하고, 학습된 EfficientNet 모델을 활용해 병해 진단 분석결과를 농민의 애플리케이션으로 전송 후 전문가의 피드백을 신속하게 받을 수 있다. 데이터 세트로는 실제 시설재배를 운영하는 농민을 섭외하여 시스템을 이용해 이미지를 취득하였고, 핸드폰으로 촬영한 이미지의 초안을 활용하여 데이터가 부족한 문제를 해결했다. 실험 결과 EfficientNet B0부터 B7까지의 정확도는 유사하여 추론 속도가 가장 빠른 B0를 채택했다. 성능향상을 위해 ImageNet으로 사전학습 된 모델을 사용해 Fine-tuning 했고, 100 Epoch부터 급격한 성능향상을 확인했다. 제안하는 서비스는 초기 병해를 빠르게 탐지하여 생산량을 증대시킬 것으로 기대한다.

Didactic Principles Of Education Students 3D-printing

  • Lukianchuk, Iurii;Tulashvili, Yurii;Podolyak, Volodymyr;Horbariuk, Roman;Kovalchuk, Vasyl;Bazyl, Serhii
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.443-450
    • /
    • 2022
  • The method of studying 3D-technologies abroad and in Ukraine is considered. The analysis of educational resources and experience of use of the equipment in branch is carried out. The didactic principles of the educational process for 3D-printing specialists are determined. The use of FDM technology and the ability to minimize the occurrence of defects in the future have been studied. An analysis of the international experience of the educational process of relevant specialists in the field. The content of training for 3D printing specialists has been developed. The experience of using 3D-technologies is described and the list of recommendations for elimination of defects during production of products by means of additive technologies is made. The recommendations will be useful not only for beginners, but also for experienced professionals in additive technologies. The need to study such experience is the main condition for the development of enterprises in Ukraine that plan to automate their own production. A 3D printing engineer must know the basics of economics and marketing, because his responsibilities include optimizing workflows to reduce the cost and speed up printing. Therefore, the knowledge gained from practical experience presented and in building for learning 3D printing engineers by the authors will be important.

인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구 (The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence)

  • 박문수;박대우
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1248-1254
    • /
    • 2022
  • 스쿨존에서 교통사고를 사전에 예방하려고 노력하고 있다. 하지만, 스쿨존 내 교통사고는 계속 발생하고 있다. 운전자가 어린이보호구역 내 상황 정보를 미리 알 수 있으면, 사고를 줄일 수 있다. 본 논문에서는 스쿨존 내 사각지대를 없애는 카메라, 사전 교통정보를 수집할 수 있는 번호인식 카메라 시스템을 설계한다. 차량속도 및 보행자를 인식하는 LIDAR 시스템을 개선하여 설계한다. 카메라 및 LIDAR에서 인식된 보행자 및 차량 영상 정보를 수집하고 가공하여, 인공지능 시계열 분석 및 인공지능 알고리즘을 적용한다. 본 논문에서 제안한 딥러닝으로 학습된 인공지능 교통사고 예방 시스템은, 스쿨존 진입 전 차량 내 모바일 장치에 스쿨존의 정보를 운전자에게 전달하는 강제 푸시서비스를 한다. 그리고 LED 안내판에 스쿨존 교통정보를 알람으로 제공한다.

비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축 (Compression of DNN Integer Weight using Video Encoder)

  • 김승환;류은석
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.778-789
    • /
    • 2021
  • 최근 다양한 분야에서 뛰어난 성능을 나타내는 Convolutional Neural Network(CNN)모델을 모바일 기기에서 사용하기 위한 다양한 연구가 진행되고 있다. 기존의 CNN 모델은 모바일 장비에서 사용하기에는 가중치의 크기가 크고 연산복잡도가 높다는 문제점이 있다. 이를 해결하기 위해 가중치의 표현 비트를 낮추는 가중치 양자화를 포함한 여러 경량화 방법들이 등장하였다. 많은 방법들이 다양한 모델에서 적은 정확도 손실과 높은 압축률을 나타냈지만, 대부분의 압축 모델들은 정확도 손실을 복구하기 위한 재학습 과정을 포함시켰다. 재학습 과정은 압축된 모델의 정확도 손실을 최소화하지만 많은 시간과 데이터를 필요로 하는 작업이다. Weight Quantization이후 각 층의 가중치는 정수형 행렬로 나타나는데 이는 이미지의 형태와 유사하다. 본 논문에서는 Weight Quantization이후 각 층의 정수 가중치 행렬을 이미지의 형태로 비디오 코덱을 사용하여 압축하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 ImageNet과 Places365 데이터 셋으로 학습된 VGG16, Resnet50, Resnet18모델에 실험을 진행하였다. 그 결과 다양한 모델에서 2%이하의 정확도 손실과 높은 압축 효율을 달성했다. 또한, 재학습 과정을 제외한 압축방법인 No Fine-tuning Pruning(NFP)와 ThiNet과의 성능비교 결과 2배 이상의 압축효율이 있음을 검증했다.

타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅 (Highlighting Defect Pixels for Tire Band Texture Defect Classification)

  • 소로;고재필
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.113-118
    • /
    • 2022
  • 사람은 독서나 필기 중 중요 문구를 형광펜으로 칠하는 것에서 착안하여, 본 논문에서는 복잡한 배경 질감을 가진 영상에서의 불량유형을 효과적으로 분류하기 위해 불량 픽셀 영역을 하이라이팅 하여 신경망을 훈련하는 방법을 제안한다. 제안 방법의 가능성을 검증하기 위하여 불량유형 구분이 매우 어려운 타이어 밴드 직물의 불량유형 분류에 제안 방법을 적용한다. 또한, 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 방법을 제안한다. 백라이트 하이라이트 영상은 GradCAM 기법과 간단한 영상처리를 이용하여 획득할 수 있다. 실험에서 우리는 제안하는 하이라이팅 기법이 분류 정확도뿐만 아니라 훈련속도 면에서 기존 방법보다 우수함을 보였다. 인식률 면에서는 제안 방법이 기존 방법 대비 최대 13.4%의 향상을 달성하였다. 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 기법이 윤곽 하이라이팅 기법보다 정확도 측면에서 우수함을 보였다.

Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2021
  • 본 논문에서는 초해상도(Super-Resolution, SR)을 계산하는데 필요한 물리 기반 시뮬레이션 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 시뮬레이션 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 대폭 감소시킨다. 이 과정에서 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 수치 손실되는 문제를 완화하며 쿼드트리를 구축한다. 학습에 사용된 데이터는 COCO 2017 데이터 셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual) 보완 방식과 유사하게 이전 계층의 출력 값을 더해주며 학습을 진행한다. 실험결과가 연기의 경우 제안된 방법은 이전 접근법에 비해 약 15~18배 정도의 속도향상을 얻었다.

Lightweight Single Image Super-Resolution Convolution Neural Network in Portable Device

  • Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4065-4083
    • /
    • 2021
  • Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.

서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용 (Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics)

  • 황지수;문재원
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.872-884
    • /
    • 2022
  • IoT 산업 발전으로 다양한 산업군에서 서로 다른 형태의 시계열 데이터를 생성하고 있으며 이를 다시 통합하여 재생산 및 활용하는 연구로 진화하고 있다. 더불어, 실제 산업에서 데이터 처리 속도 및 활용 시스템의 이슈 등으로 인해 시계열 데이터 활용 시 데이터의 크기를 압축하여 통합 활용하는 경향이 증가하고 있다. 그러나 시계열 데이터의 통합 가이드라인이 명확하지 않고 데이터 기술 시간 간격, 시간 구간 등 각각의 특성이 달라 일괄 통합하여 활용하기 어렵다. 본 논문에서는 통합 기준 설정 방법과 시계열 데이터의 통합시 발생하는 문제점을 기반으로 두 가지의 통합 방법을 제시하였다. 이를 기반으로 시계열 데이터의 특성을 고려한 이질적 시계열 데이터 통합 프레임워크를 구성하였으며 압축된 서로 다른 이질적 시계열 데이터의 통합과 다양한 기계 학습에 활용할 수 있음을 확인하였다.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.