• 제목/요약/키워드: Learning Machine System

검색결과 1,789건 처리시간 0.027초

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

머신러닝을 활용한 모돈의 생산성 예측모델 (Forecasting Sow's Productivity using the Machine Learning Models)

  • 이민수;최영찬
    • 농촌지도와개발
    • /
    • 제16권4호
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Wearable Sensor-Based Biometric Gait Classification Algorithm Using WEKA

  • Youn, Ik-Hyun;Won, Kwanghee;Youn, Jong-Hoon;Scheffler, Jeremy
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Gait-based classification has gained much interest as a possible authentication method because it incorporate an intrinsic personal signature that is difficult to mimic. The study investigates machine learning techniques to mitigate the natural variations in gait among different subjects. We incorporated several machine learning algorithms into this study using the data mining package called Waikato Environment for Knowledge Analysis (WEKA). WEKA's convenient interface enabled us to apply various sets of machine learning algorithms to understand whether each algorithm can capture certain distinctive gait features. First, we defined 24 gait features by analyzing three-axis acceleration data, and then selectively used them for distinguishing subjects 10 years of age or younger from those aged 20 to 40. We also applied a machine learning voting scheme to improve the accuracy of the classification. The classification accuracy of the proposed system was about 81% on average.

머신러닝을 위한 블록형 모듈화 아키텍처 설계 (Design of Block-based Modularity Architecture for Machine Learning)

  • 오유수
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.476-482
    • /
    • 2020
  • In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.

인공신경망을 이용한 머신러닝 기반의 연료펌프 고장예지 연구 (Study of Fuel Pump Failure Prognostic Based on Machine Learning Using Artificial Neural Network)

  • 최홍;김태경;허경린;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.52-57
    • /
    • 2019
  • The key technology of the fourth industrial revolution is artificial intelligence and machine learning. In this study, FMEA was performed on fuel pumps used as key items in most systems to identify major failure components, and artificial neural networks were built using big data. The main failure mode of the fuel pump identified by the test was coil damage due to overheating. Based on the artificial neural network built, machine learning was conducted to predict the failure and the mean error rate was 4.9% when the number of hidden nodes in the artificial neural network was three and the temperature increased to $140^{\circ}C$ rapidly.

인공지능 머신러닝 기술을 이용한 주식 종목 매수/매도 추천시스템의 분석 및 설계 (Analysis and Design of Stock Item Buy/Sell Recommend System using AI Machine Learning Technology)

  • 조병호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.103-108
    • /
    • 2021
  • 주식이 오를지 내릴지를 예측하는 것은 주식의 불확실성으로 매우 어렵다. 인공지능 기술을 이용한 주가예측 방법에 대한 연구가 오랫동안 이루어져왔다. 최근에는 증권 회사에도 로봇 어드바이저라는 이름으로 인공지능 기술을 이용한 주식 매수/매도 추천 프로그램이 사용되고 있다. 본 논문에서는 인공지능 머신러닝 기술을 이용한 매수/매도 추천 시스템을 개발하기 위하여 여러 가지 기술적 분석 방법의 결과를 활용하는 이 시스템의 핵심인 엔진을 설계한다. 또한 객체지향 분석 방법을 이용한 요구사항 분석 및 플로우차트, 화면 설계 등을 보여여줌으로써 효과적인 인공지능 머신러닝 기술을 이용한 매수/매도 추천 시스템의 소프트웨어 분석 및 설계 방법을 제시하고자 한다.

다중 머신러닝 알고리즘을 이용한 악성 URL 예측 시스템 설계 및 구현 (Design and Implementation of Malicious URL Prediction System based on Multiple Machine Learning Algorithms)

  • 강홍구;신삼신;김대엽;박순태
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1396-1405
    • /
    • 2020
  • Cyber threats such as forced personal information collection and distribution of malicious codes using malicious URLs continue to occur. In order to cope with such cyber threats, a security technologies that quickly detects malicious URLs and prevents damage are required. In a web environment, malicious URLs have various forms and are created and deleted from time to time, so there is a limit to the response as a method of detecting or filtering by signature matching. Recently, researches on detecting and predicting malicious URLs using machine learning techniques have been actively conducted. Existing studies have proposed various features and machine learning algorithms for predicting malicious URLs, but most of them are only suggesting specialized algorithms by supplementing features and preprocessing, so it is difficult to sufficiently reflect the strengths of various machine learning algorithms. In this paper, a system for predicting malicious URLs using multiple machine learning algorithms was proposed, and an experiment was performed to combine the prediction results of multiple machine learning models to increase the accuracy of predicting malicious URLs. Through experiments, it was proved that the combination of multiple models is useful in improving the prediction performance compared to a single model.

도시 빅데이터를 활용한 스마트시티의 교통 예측 모델 - 환경 데이터와의 상관관계 기계 학습을 통한 예측 모델의 구축 및 검증 - (Big Data Based Urban Transportation Analysis for Smart Cities - Machine Learning Based Traffic Prediction by Using Urban Environment Data -)

  • 장선영;신동윤
    • 한국BIM학회 논문집
    • /
    • 제8권3호
    • /
    • pp.12-19
    • /
    • 2018
  • The research aims to find implications of machine learning and urban big data as a way to construct the flexible transportation network system of smart city by responding the urban context changes. This research deals with a problem that existing a bus headway model is difficult to respond urban situations in real-time. Therefore, utilizing the urban big data and machine learning prototyping tool in weathers, traffics, and bus statues, this research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data is gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is implemented by the machine learning tool (RapidMiner Studio) and conducted several tests for bus delays prediction according to specific circumstances. As a result, possibilities of transportation system are discussed for promoting the urban efficiency and the citizens' convenience by responding to urban conditions.

Application of the machine learning technique for the development of a condensation heat transfer model for a passive containment cooling system

  • Lee, Dong Hyun;Yoo, Jee Min;Kim, Hui Yung;Hong, Dong Jin;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2297-2310
    • /
    • 2022
  • A condensation heat transfer model is essential to accurately predict the performance of the passive containment cooling system (PCCS) during an accident in an advanced light water reactor. However, most of existing models tend to predict condensation heat transfer very well for a specific range of thermal-hydraulic conditions. In this study, a new correlation for condensation heat transfer coefficient (HTC) is presented using machine learning technique. To secure sufficient training data, a large number of pseudo data were produced by using ten existing condensation models. Then, a neural network model was developed, consisting of a fully connected layer and a convolutional neural network (CNN) algorithm, DenseNet. Based on the hold-out cross-validation, the neural network was trained and validated against the pseudo data. Thereafter, it was evaluated using the experimental data, which were not used for training. The machine learning model predicted better results than the existing models. It was also confirmed through a parametric study that the machine learning model presents continuous and physical HTCs for various thermal-hydraulic conditions. By reflecting the effects of individual variables obtained from the parametric analysis, a new correlation was proposed. It yielded better results for almost all experimental conditions than the ten existing models.

임베디드 시스템에서의 양자화 기계학습을 위한 효율적인 양자화 오차보상에 관한 연구 (Study on the Effective Compensation of Quantization Error for Machine Learning in an Embedded System)

  • 석진욱
    • 방송공학회논문지
    • /
    • 제25권2호
    • /
    • pp.157-165
    • /
    • 2020
  • 본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험 결과 제안한 방식의 알고리즘을 로젠블록 함수를 통한 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.