• Title/Summary/Keyword: Learning Machine System

Search Result 1,789, Processing Time 0.026 seconds

Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble (머신러닝 앙상블을 활용한 공압기의 전력 효율 최적화 시뮬레이션 )

  • Juhyeon Kim;Moonsoo Jang;Jieun Choi;Yoseob Heo;Hyunsang Chung;Soyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1205-1213
    • /
    • 2023
  • This study delves into methods for enhancing the power efficiency of air compressor systems, with the primary objective of significantly impacting industrial energy consumption and environmental preservation. The paper scrutinizes Shinhan Airro Co., Ltd.'s power efficiency optimization technology and employs machine learning ensemble models to simulate power efficiency optimization. The results indicate that Shinhan Airro's optimization system led to a notable 23.5% increase in power efficiency. Nonetheless, the study's simulations, utilizing machine learning ensemble techniques, reveal the potential for a further 51.3% increase in power efficiency. By continually exploring and advancing these methodologies, this research introduces a practical approach for identifying optimization points through data-driven simulations using machine learning ensembles.

Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning (머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템)

  • Kim, Sanghyuk;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

Comparative Study to Measure the Performance of Commonly Used Machine Learning Algorithms in Diagnosis of Alzheimer's Disease

  • kumar, Neeraj;manhas, Jatinder;sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • In machine learning, the performance of the system depends upon the nature of input data. The efficiency of the system improves when the behavior of the input data changes from un-normalized to normalized form. This paper experimentally demonstrated the performance of KNN, SVM, LDA and NB on Alzheimer's dataset. The dataset undertaken for the study consisted of 3 classes, i.e. Demented, Converted and Non-Demented. Analysis shows that LDA and NB gave an accuracy of 89.83% and 88.19% respectively in both the cases whereas the accuracy of KNN and SVM improved from 46.87% to 82.80% and 53.40% to 88.75% respectively when input data changed from un-normalized to normalized state. From the above results it was observed that KNN and SVM show significant improvement in classification accuracy on normalized data as compared to un-normalized data, whereas LDA and NB reflect no such change in their performance.

UAS Automatic Control Parameter Tuning System using Machine Learning Module (기계학습 알고리즘을 이용한 UAS 제어계수 실시간 자동 조정 시스템)

  • Moon, Mi-Sun;Song, Kang;Song, Dong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.874-881
    • /
    • 2010
  • A automatic flight control system(AFCS) of UAS needs to control its flight path along target path exactly as adjusts flight coefficient itself depending on static or dynamic changes of airplane's features such as type, size or weight. In this paper, we propose system which tunes control gain autonomously depending on change of airplane's feature in flight as adding MLM(Machine Learning Module) on AFCS. MLM is designed with Linear Regression algorithm and Reinforcement Learning and it includes EvM(Evaluation Module) which evaluates learned control gain from MLM and verified system. This system is tested on beaver FDC simulator and we present its analysed result.

Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine (Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링)

  • Lee, Bo-Hoon;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.269-275
    • /
    • 2013
  • In this paper, a new modeling method of a magnetic levitation(Maglev) system using extreme learning machine(ELM) is proposed. The linearized methods using Taylor Series expansion has been used for modeling of a Maglev system. However, the numerical method has some drawbacks when dealing with the components with high nonlinearity of a Maglev system. To overcome this problem, we propose a new modeling method of the Maglev system with electro magnetic suspension, which is based on ELM with fast learning time than conventional neural networks. In the proposed method, the initial input weights and hidden biases of the method are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose generalized inverse. matrix Experimental results show that the proposed method can achieve better performance for modeling of Maglev system than the previous numerical method.

Design and Implementation of Machine Learning System for Fine Dust Anomaly Detection based on Big Data (빅데이터 기반 미세먼지 이상 탐지 머신러닝 시스템 설계 및 구현)

  • Jae-Won Lee;Chi-Ho Lin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.55-58
    • /
    • 2024
  • In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.

Short-Term Load Forecasting Based on Sequential Relevance Vector Machine

  • Jang, Youngchan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.318-324
    • /
    • 2015
  • This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparameters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is comparable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational complexity.

Machine Learning Based Keyphrase Extraction: Comparing Decision Trees, Naïve Bayes, and Artificial Neural Networks

  • Sarkar, Kamal;Nasipuri, Mita;Ghose, Suranjan
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.693-712
    • /
    • 2012
  • The paper presents three machine learning based keyphrase extraction methods that respectively use Decision Trees, Na$\ddot{i}$ve Bayes, and Artificial Neural Networks for keyphrase extraction. We consider keyphrases as being phrases that consist of one or more words and as representing the important concepts in a text document. The three machine learning based keyphrase extraction methods that we use for experimentation have been compared with a publicly available keyphrase extraction system called KEA. The experimental results show that the Neural Network based keyphrase extraction method outperforms two other keyphrase extraction methods that use the Decision Tree and Na$\ddot{i}$ve Bayes. The results also show that the Neural Network based method performs better than KEA.

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis (선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘)

  • Kang, Seung-Hyun;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.