• 제목/요약/키워드: Learning Algorithms

검색결과 2,317건 처리시간 0.026초

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.

미세먼지 로봇을 주제로 한 언플러그드 교육 프로그램의 개발 (Development of Fine Dust Robot Unplugged Education Program)

  • 이재호;장준형;장인표
    • 창의정보문화연구
    • /
    • 제5권2호
    • /
    • pp.183-191
    • /
    • 2019
  • 본 연구는 현대사회에서 요구하고 있는 역량인 4C(창의성, 비판적 사고력, 의사소통 능력, 협업)와 CT(Computational Thinking)를 효과적으로 기를 수 있는 언플러그드 교육 프로그램을 개발하는 것을 목적으로 수행되었다. 본 연구는 우선 언플러그드 교육 프로그램에 적합한 주제로 '미세먼지 로봇'을 발굴하였다. 다음으로 발굴된 주제에 따라 4C와 CT를 기를 수 있는 언플러그드 교육 프로그램 4차시를 설계하였다. 본 연구가 개발한 교육 프로그램의 개요는 다음과 같다. 1차시는 주제를 인식하고 학습 동기를 유발하도록 하였으며, 2차시와 3차시는 언플러그드 놀이를 바탕으로 CT를 계발도록 하였다. 4차시는 언플러그드 놀이를 통해 만든 알고리즘을 자연어 명령어 카드를 통해 프로그래밍하며 산출물을 제작하도록 하였다. 그리고 설계한 언플러그드 교육 프로그램에서 활용할 수 있는 교육 자료를 개발하였다. 초등학생을 대상으로 교육 프로그램의 시범 적용을 실시하고, 컴퓨팅 사고력 사전·사후 검사를 일반학생과 영재학생을 대상으로 실시한, 결과 2집단 모두 효과성이 확인되었다.

제조물책임 범위의 확장 : SW와 AI의 적용가능성 (Expansion of Product Liability : Applicability of SW and AI)

  • 김윤명
    • 정보화정책
    • /
    • 제30권1호
    • /
    • pp.67-88
    • /
    • 2023
  • 제조물책임 범위 확장이 필요한 것은 제조물책임법 제정 시 산업 환경이 변했기 때문이다. 사람이 코딩한 알고리즘과 다르게, 인공지능은 기계학습에 따라 블랙박스화 되면서 개발자도 결과를 설명하지 못한다. 특히, 인공지능으로 인하여 발생하는 문제의 원인을 알 수 없기 때문에 책임소재도 불분명할뿐더러 피해자 배상도 쉽지 않다. 동산 등으로 한정된 제조물책임법에 따라 소프트웨어(SW)나 인공지능은 무체물로 제조물성이 인정되지 않기 때문이다. 고육지책으로 매체에 저장되거나 내장된 경우에는 제조물성이 인정될 수 있다고 한다. 그러나 매체에 따라 달리 적용되는 것은 타당하지 않다. EU는 인공지능이 포함된 경우, 제조물책임을 인정하는 제조물책임지침 개정을 추진 중이다. 피해자에 대한 보상이 제조물책임법이 추구하는 가치임에도 제조물성에 치중하여 본질을 간과해왔다. 다만, 인공지능이 채택된 서비스를 이용하여 발생한 사고라도 무조건적으로 제조물책임을 지우는 것이 아닌 실질적인 위험성에 따른 기준이 제시되는 것이 바람직하다.

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

FitRec 기반 달리기 심박수 예측 시스템 (Prediction System of Running Heart Rate based on FitRec)

  • 김진욱;김광현;선준호;이승우;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.165-171
    • /
    • 2022
  • 사람의 심박수는 운동 강도 측정의 기준으로 사용되는 중요한 지표이다. 만약 심박수를 예측한다면 운동 중 운동 강도를 미리 조절하여 효율적으로 운동할 수 있다. 본 논문에서는 FitRec 기반 달리기 운동을 수행하는 사용자의 심박수를 예측하는 모델을 제안한다. 학습을 위해 Endomondo의 데이터를 사용하여 예측 모델에 적용한다. 성능 비교를 위해 시계열 데이터 처리 알고리즘 LSTM(long short term memory)과 GRU(gated recurrent unit)를 사용하였다. FitRec에 유산소 운동 중 달리기 데이터만 학습한 결과 여러 유산소 운동 데이터를 모두 학습한 모델보다 MAE(mean absolute error)와 RMSE(root mean squared error) 둘 다 성능이 향상됨을 확인하였다.

영화 장르 메타데이터 생성을 위한 오디오 활용 방법에 대한 연구 (A Research on the Audio Utilization Method for Generating Movie Genre Metadata)

  • 용성중;박효경;유연휘;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.284-286
    • /
    • 2021
  • 지속적으로 인터넷 및 디지털의 발전으로 많은 양의 미디어 데이터를 저장하고 온라인을 통해 개인에게 맞춤형 서비스를 제공하는 플랫폼이 등장하고 있다. 이러한 서비스를 제공하는 업체들은 미디어의 소비를 촉진 시키기 위해 개인 취향에 맞는 영화를 추천한다. 각 업체에서는 사용자가 선호할 미디어 추천을 위해 다양한 알고리즘에 대해 많은 연구를 하고 있다. 영화는 액션, 멜로, 공포, 드라마 등으로 장르를 구분하고 있으며, 영화의 오디오(음악,효과,음성)는 영화를 구성하는 중요한 제작 요소로 자리잡고 있다. 본 연구에서는 영화예고편을 바탕으로 장르별 오디오를 추출하고, 장르별 오디오의 공통점을 확인 후 인공지능의 지도학습을 통해 영화 장르를 구별하고 추후 메타데이터 생성을 위한 활용방안을 제안하고자 한다.

  • PDF

군집 별 표준곡선 매개변수를 이용한 치밀오일 생산성 예측 순환신경망 모델 (Recurrent Neural Network Model for Predicting Tight Oil Productivity Using Type Curve Parameters for Each Cluster)

  • 한동권;김민수;권순일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.297-299
    • /
    • 2021
  • 치밀오일 미래 생산성 예측은 잔류오일 회수량 및 저류층 거동 분석을 위해 중요한 작업이다. 일반적으로 석유공학적 관점에서 감퇴곡선법을 이용하여 생산성 예측이 이루어지는데, 최근에는 데이터기반의 머신러닝 기법을 이용한 연구도 수행되고 있다. 본 연구에서는 딥러닝 기반 순환신경망과 LSTM, GRU 알고리즘을 이용하여 미래 생산량 예측을 위한 효과적인 모델을 제안하고자 한다. 입력변수로는 치밀오일 생산 시 산출되는 오일, 가스, 물과 이와 더불어 다양한 군집분석을 통해 산출된 표준곡선이 주요 매개변수이고, 출력변수는 월별 오일 생산량이다. 기존의 경험적 모델인 감퇴곡선법과 순환신경망 모델들을 비교하였으며, 모델의 예측성능을 향상시키기 위해 하이퍼파라미터 튜닝을 통해 최적 모델을 도출하였다.

  • PDF

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • 제23권3호
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.