• Title/Summary/Keyword: Learning &

Search Result 35,134, Processing Time 0.345 seconds

Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting (다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안)

  • Hyeseung Park;Jongwook Yoon;Hojun Lee;Hyunho Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2024
  • Local reservoirs are crucial sources for agricultural water supply, necessitating stable water level management to prepare for extreme climate conditions such as droughts. Water level prediction is significantly influenced by local climate characteristics, such as localized rainfall, as well as seasonal factors including cropping times, making it essential to understand the correlation between input and output data as much as selecting an appropriate prediction model. In this study, extensive multivariate data from over 400 reservoirs in Jeollabuk-do from 1991 to 2022 was utilized to train and validate a water level prediction model that comprehensively reflects the complex hydrological and climatological environmental factors of each reservoir, and to analyze the impact of each input feature on the prediction performance of water levels. Instead of focusing on improvements in water level performance through neural network structures, the study adopts a basic Feedforward Neural Network composed of fully connected layers, batch normalization, dropout, and activation functions, focusing on the correlation between multivariate input data and prediction performance. Additionally, most existing studies only present short-term prediction performance on a daily basis, which is not suitable for practical environments that require medium to long-term predictions, such as 10 days or a month. Therefore, this study measured the water level prediction performance up to one month ahead through a recursive method that uses daily prediction values as the next input. The experiment identified performance changes according to the prediction period and analyzed the impact of each input feature on the overall performance based on an Ablation study.

Analysis of the Effectiveness of Big Data-Based Six Sigma Methodology: Focus on DX SS (빅데이터 기반 6시그마 방법론의 유효성 분석: DX SS를 중심으로)

  • Kim Jung Hyuk;Kim Yoon Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Over recent years, 6 Sigma has become a key methodology in manufacturing for quality improvement and cost reduction. However, challenges have arisen due to the difficulty in analyzing large-scale data generated by smart factories and its traditional, formal application. To address these limitations, a big data-based 6 Sigma approach has been developed, integrating the strengths of 6 Sigma and big data analysis, including statistical verification, mathematical optimization, interpretability, and machine learning. Despite its potential, the practical impact of this big data-based 6 Sigma on manufacturing processes and management performance has not been adequately verified, leading to its limited reliability and underutilization in practice. This study investigates the efficiency impact of DX SS, a big data-based 6 Sigma, on manufacturing processes, and identifies key success policies for its effective introduction and implementation in enterprises. The study highlights the importance of involving all executives and employees and researching key success policies, as demonstrated by cases where methodology implementation failed due to incorrect policies. This research aims to assist manufacturing companies in achieving successful outcomes by actively adopting and utilizing the methodologies presented.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.273-285
    • /
    • 2024
  • With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

Interface Application of a Virtual Assistant Agent in an Immersive Virtual Environment (몰입형 가상환경에서 가상 보조 에이전트의 인터페이스 응용)

  • Giri Na;Jinmo Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In immersive virtual environments including mixed reality (MR) and virtual reality (VR), avatars or agents, which are virtual humans, are being studied and applied in various ways as factors that increase users' social presence. Recently, studies are being conducted to apply generative AI as an agent to improve user learning effects or suggest a collaborative environment in an immersive virtual environment. This study proposes a novel method for interface application of a virtual assistant agent (VAA) using OpenAI's ChatGPT in an immersive virtual environment including VR and MR. The proposed method consists of an information agent that responds to user queries and a control agent that controls virtual objects and environments according to user needs. We set up a development environment that integrates the Unity 3D engine, OpenAI, and packages and development tools for user participation in MR and VR. Additionally, we set up a workflow that leads from voice input to the creation of a question query to an answer query, or a control request query to a control script. Based on this, MR and VR experience environments were produced, and experiments to confirm the performance of VAA were divided into response time of information agent and accuracy of control agent. It was confirmed that the interface application of the proposed VAA can increase efficiency in simple and repetitive tasks along with user-friendly features. We present a novel direction for the interface application of an immersive virtual environment through the proposed VAA and clarify the discovered problems and limitations so far.

A Study on the Scholarly Information and Data Requirements of Researchers for Data-Driven Research and Development (데이터 기반 R&D 지원을 위한 연구자의 학술정보 및 데이터 요구 분석 연구)

  • Seok-Hyoung Lee;Kangsandajung Lee;Jayhoon Kim;Hyejin Lee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.1
    • /
    • pp.255-283
    • /
    • 2024
  • In this study, as a preliminary research to effectively support data-driven R&D of researchers, we analyzed the academic information and data requirements for researchers to discover new types of academic information and datasets, and to propose directions for academic information services. To achieve the research objectives, we conducted an exploratory case study involving five researchers and administered an online survey among ScienceON users to glean insights into data-driven R&D behaviors and information/data requirements. As a result, researchers relatively referred to academic papers, datasets and software information from academic papers or conference materials. Moreover, the methods and pathways for acquiring data, as well as the types of data, varied across different subject areas. Researchers often faced challenges in data-driven R&D due to difficulties in locating and accessing necessary datasets or software such as learning models. Therefore it has been analyzed that for future support of data-driven R&D, there is a need to systematically construct datasets by subject. Additionally, it is considered necessary to extract and summarize dataset and related software information in conjunction with academic papers.

Image-Data-Acquisition and Data-Structuring Methods for Tunnel Structure Safety Inspection (터널 구조물 안전점검을 위한 이미지 데이터 취득 및 데이터 구조화 방법)

  • Sung, Hyun-Suk;Koh, Joon-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.15-28
    • /
    • 2024
  • This paper proposes a method to acquire image data inside tunnel structures and a method to structure the acquired image data. By improving the conditions by which image data are acquired inside the tunnel structure, high-quality image data can be obtained from area type tunnel scanning. To improve the data acquisition conditions, a longitudinal rail of the tunnel can be installed on the tunnel ceiling, and image data of the entire tunnel structure can be acquired by moving the installed rail. This study identified 0.5 mm cracked simulation lines under a distance condition of 20 m at resolutions of 3,840 × 2,160 and 720 × 480 pixels. In addition, the proposed image-data-structuring method could acquire image data in image tile units. Here, the image data of the tunnel can be structured by substituting the application factors (resolution of the acquired image and the tunnel size) into a relationship equation. In an experiment, the image data of a tunnel with a length of 1,000 m and a width of 20 m were obtained with a minimum overlap rate of 0.02% to 8.36% depending on resolution and precision, and the size of the local coordinate system was found to be (14 × 15) to (36 × 34) pixels.