• Title/Summary/Keyword: Lean premixed flame

Search Result 155, Processing Time 0.024 seconds

Interaction Effects of Turbulent Flow and Chemical Reaction in a Swirl Combustor (스월연소기의 난류와 화학반응 간섭효과)

  • Sung, Hong-Gye;Kim, Jong-Chan;Yang, Vigor;Cha, Bong-Jun;Ahn, I-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.71-74
    • /
    • 2007
  • Large Eddy Simulation(LES) has been conducted to insight interaction effects of turbulent flow and chemical reaction of a lean-Premixed swirl combustor. The unsteady turbulent flame is carefully simulated so that the motion of flow and flame can be characterized in detail. Fuel lumps escaping from the primary combustion zone move downstream and consequently produce local hot spots conveying large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by the spatial and temporal Rayleigh parameter.

  • PDF

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber (예혼합실을 갖는 연소-노즐 시스템의 음향장 해석)

  • Yoon, Myunggon;Kim, Jina;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-53
    • /
    • 2017
  • This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Numerical Simulation of the Acoustic Field in a Burner with Helmholtz Resonators (헬름홀츠 공진기에 따른 버너내의 음향장에 관한 수치해석)

  • Hong, Jung-Goo;Cho, Han-Chang;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.86-91
    • /
    • 2007
  • A study was performed to understand self-excited pressure fluctuations in the lean premixed flames and to evaluate the effect of Helmholtz resonator on the pressure fluctuations. As low-frequency pressure fluctuations have been reported to cause fatal damage to the combustor and the entire system, Helmholtz-type resonators, which reduce the damage by low-frequency pressure fluctuation in the combustor, are attached to the channel of unburned mixture flow. It is found that the range of low-frequency pressure fluctuations of flame mode 2 is narrowed by the attachment of Helmholtz resonators. From this result, if Helmholtz-type resonators are applied to actual gas turbine combustor, it is confirmed that Helmholtz resonators attached on the fuel discharge hole are also effective for narrowing the range of flame mode 2

  • PDF

A Study on Flame Structure of SNG Fuel Part I : Interaction between Flames Downstream (SNG 연료의 화염구조에 관한 연구 Part I : 화염후류간 상호작용)

  • Sim, Keunseon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.53-56
    • /
    • 2015
  • A combined experimental and numerical study has been conducted to investigate the downstream interaction between simulated SNG-air premixed flames in fuel composition of 91% $CH_4$ + 6% $C_3H_8$ + 3% $H_2$. In this study, the effects of fuel molar concentration(lean-rich) and strain rate($a_g$) were major parameters. A main focus is to investigate flames behavior and chemical interaction at flames downstream. The numerical results were calculated by OPPDIF application. The reaction mechanism adopted was USC-II model including C3 reaction.

  • PDF

Effect of Injection Pressure and Injection Timing on Spray and Flame Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 분무 및 화염특성)

  • Oh, Heechang;Lee, Minsuk;Park, Jungseo;Bae, hoongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.221-228
    • /
    • 2013
  • An experimental study was carried out to investigate the effects of the injection timing on the spray and combustion characteristics in a spray-guided direct-injection spark-ignition (DISI) engine under lean stratified operation. An in-cylinder pressure analysis, exhaust emissions measurement, and visualization of the spray and combustion were employed in this study. The combustion in a stratified DISI engine was found to have both lean premixed and diffusion controlled flame combustion characteristics. The injection timing condition corresponding to the stratified mixture characteristics was verified to be a dominant factor for these flame characteristics. For the early injection timing, a non-luminous blue flame and low combustion efficiency were observed as a result of the lean homogeneous mixture formation. On the other hand, a luminous sooting flame was shown at the late injection timing because of an under-mixed mixture formation. In addition, the smoke emission and incomplete combustion products were increased at the late injection timing as a result of the increased locally rich area. On the other hand, the NOx emissions decreased and IMEP increased as the injection timing retarded. The combustion phasing produced by the injection timing was verified as the reason for this observation.