• 제목/요약/키워드: Leakage vortex

검색결과 89건 처리시간 0.026초

베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성 (Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface)

  • 이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

터보펌프 인듀서의 유동 및 성능의 수치적 평가 (Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers)

  • 심창열;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권1호
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.

Numerical Evaluation of Flow and Performance of Turbo Pump Inducers

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.481-490
    • /
    • 2004
  • Steady state flow calculations are executed for turbo-pump inducers of modern design to validate the performance of Tascflow code. Hydrodynamic performance of inducers is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of whole pressure loss through the blade passage. The viscous loss is considerably large due to the strong secondary flow. There appears more stronger leading edge recirculation for the backswept inducer, and this increases the pressure loss. However, blade loading near the leading edge is considerably reduced and cavitation inception delayed.

엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구 (Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan)

  • 박현수;조이상;강현구;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF

터보펌프 인듀서의 유동 및 성능의 수치적 평가 (Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers)

  • 심창열;강신형
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.22-28
    • /
    • 2002
  • Steady state flow calculations are conducted for the newly-designed turbo-pump inducers to validate the performance of Tascflow code. Hydrodynamic performance is evaluated, and structures of the passage flow and leading edge recirculation are also investigated. The calculated results show good coincidence with the experimental data of the static pressure performance and velocity profiles near the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure losses. Amount of pressure losses from the upstream to the leading edge corresponds to that of pressure losses through the whole blade. The total viscous losses are considerably large due to the strong secondary flow.

Investigation on the Off Design Performance of a Transonic Compressor with Circumferential Grooves

  • Zhu, Jianhong;Piao, Ying;Zhou, Jianxing;Qi, Xingming
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.66-71
    • /
    • 2008
  • Two cases with circumferential grooves were designed for a transonic compressor, and 3-D numerical simulations were conducted for stall mechanism at three representative speeds. A conclusion can be drawn from the comparison between compressors with or without casing treatment that: with the rising of rotation speed, stall margin increases dramatically under the help of casing treatments, and the case with middle grooves has reasonable compromise between stall margin increment and efficiency cutting. At lower speed, the increment reduces, and grooves at the back of blade tip have more influence on stall margin. Further investigation shows there is a transition in mechanism of compressor stall with the decline of rotational speed: at high rotation speed, the expansion of stall margin mainly results from the suppression of tip leakage vortex by casing treatments, yet it benefits more from the depression of boundary layer separation from suction surface of blade tip.

  • PDF

1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석 (A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine)

  • 황동하;정요한;백제현;이동호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.157-160
    • /
    • 2008
  • 터빈의 익단 간극은 블레이드와 케이싱간 마찰을 줄이기 위한 중요한 부분이다. 수치 해석을 통해 익단 간극이 직접적으로 터빈에 미치는 영향을 판단하기 위하여 UTRC 터빈을 익단 간극이 있는 경우와 없는 경우로 나눠 계산을 수행하였다. CFX를 통해 도출된 해석결과는, 익단 간극이 있는 경우 생성된 와류가 터빈 전반에 걸친 손실을 일으키고 그 결과 익단 간극이 없는 터빈에 비해 더 낮은 전압효율을 보인다.

  • PDF

Inducer Design to Avoid Cavitation Instabilities

  • Kang, Dong-Hyuk;Watanabe, Toshifumi;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.439-448
    • /
    • 2009
  • Three inducers were designed to avoid cavitation instabilities. This was accomplished by avoiding the interaction of tip cavity with the leading edge of the next blade. The first one was designed with extremely larger leading edge sweep, the second and third ones were designed with smaller incidence angle by reducing the inlet blade angle or increasing the design flow rate, respectively. The inducer with larger design flow rate has larger outlet blade angle to obtain sufficient pressure rise. The inducer with larger sweep could suppress the cavitation instabilities in higher flow rates more than 95% of design flow coefficient, owing to weaker tip leakage vortex cavity with stronger disturbance by backflow vortices. The inducer with larger outlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the extension of the tip cavity along the suction surface of the blade. The inducer with smaller inlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the occurrence of the cavity first in the blade passage and its extension upstream. The cavity shape and suction performance were reasonably simulated by three dimensional CFD computations under the steady cavitating condition, except for the backflow vortex cavity. The difference in the growth of cavity for each inducer is explained from the difference of the pressure distribution on the suction side of the blades.