• 제목/요약/키워드: Leakage resonant inductance

검색결과 87건 처리시간 0.029초

LCC 컨버터 기반의 제논 플래시 램프 구동장치를 위한 시머회로 설계 (Design of a Simmer Circuit for Xenon Flash Lamp Driver Based on a LCC Converter)

  • 송승호;조찬기;박수미;박현일;배정수;장성록;류홍제
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.231-232
    • /
    • 2017
  • This paper describes the design and implementation of a 2.5kW (500V, 5A) simmer circuit that maintains the ionization of xenon gas inside the lamp. The design is based on a LCC resonant converter in continuous conduction mode (CCM) with above resonant frequency to take advantage of high power density from using parasitic elements such as the leakage inductance in a power transformer. In addition, since the converter has current source output characteristics, it is suitable for maintaining ionization of the lamp having the negative resistance load characteristic. To verify this converter design, PSpice modeling was performed. Finally, the developed simmer circuit is verified by a resistive load of rated performance and the Ionization maintenance operation of the xenon flash lamp.

  • PDF

Development of High Efficiency Boost DC/DC Converter For EV

  • Song, Sung-Geon;Lee, Sang-Hun;Song, Hyun-Jig;Park, Seong-Mi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.415-421
    • /
    • 2014
  • In this paper, reactorless high efficiency boost DC/DC converter for EV is proposed. In proposed converter, improves efficiency because decrease power loss when the switches are turned on/off using zero current switching (ZCS) at all switch of primary full bridge. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer, it reduces system size and expense because of not add special reactor. For validity verification of proposed converter, in the paper implements simulation using PSIM and perform experiment by making 5KW DC/DC converter. In experimental results, efficiency of proposed converter conformed superiority.

2차측 누설 인덕턴스를 고려한 고주파 LLC 공진형 컨버터의 최적 설계 (Optimal Design of LLC Resonant Converter with Secondary Leakage Inductance)

  • 박화평;김민아;정지훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2016
  • MHz 이상의 높은 공진 주파수를 가지는 LLC 공진형 컨버터는 공진 소자의 크기가 줄어 높은 전력 밀도를 구현 가능하다. 하지만 2차측 누설 인덕턴스가 공진에 크게 영향을 미쳐 기존의 디자인 방법에 오차가 커지고 이는 효율 감소로 이어진다. 본 논문은 이를 극복하기 위해 2차측 누설 인덕턴스를 고려한 컨버터 모델을 제시하고 이의 전압 이득을 분석한다. 제안하는 모델을 사용하여 높은 효율을 위한 변압기의 자화 인덕턴스, 턴 비를 제시하고, 안정적인 컨버터 동작을 위해 2차측 다이오드 디자인 방법을 제안한다. 모든 제안하는 분석 및 디자인 방법은 1 MHz 스위칭 주파수를 가지는 240 W LLC 공진형 컨버터를 통해 검증하였다.

  • PDF

반도체 스위치를 이용한 양방향 고압 펄스 발생기 (Bi-polar High-voltage Pulse Generator Using Semiconductor switches)

  • 김종현;류명효;정인화;;김종수;임근희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.291-293
    • /
    • 2003
  • A semiconductor switch-based fast hi-polar high voltage pulse generator is proposed in this paper The proposed pulse system is made of a thyristor based-rectifier, DC link capacitor, a push-pull resonant inverter, a high voltage transformer. secondary capacitor, a high voltage IGBT & diode stacks, and a variable capacitor. The proposed system makes hi-polar high voltage sinusoidal waveform using resonance between leakage inductance of the transformer and secondary capacitor and transfers energy to output load at maximum of the secondary capacitor voltage. Compared to previous hi-polar high voltage pulse power supply using nonlinear transmission line, the proposed pulse power system using only semiconductor switches has simple structure and gives high efficiency

  • PDF

GTO-직류전원을 병용한 부하전류(轉流)식 전류형 인버터에 관한 연구 (A Study on the Load Commutated Current Source Inverter assisted with A GTO-DC Source Forced Commutation)

  • 목형수;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.591-595
    • /
    • 1991
  • The load commutated current source inverter(LCCSI) with GTO-DC source forced commutation is described in this Paper. GTO-DC source forced commutation assures the stability of commutation below critical frequency determined by output capcaitor and it also gives the oppotunity of PWM operation for reducing resonant harmonic components. he simulation results clearly show hat the proposed commutation circuit works well in the resonance phenomenon between output capacitor and machine leakage inductance.

  • PDF

고 에너지 밀도 펄스 변압기 설계 (Design of A High Energy Density Pulse Transformer)

  • 남상훈;박성수;하기만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2186-2188
    • /
    • 1999
  • A high frequency and energy density pulse transformer is a critical component of a high voltage power supply in a traveling wave tube (TWT) amplifier system. In this paper, processes of design, manufacturing, and test of the transformer are discussed. Primary voltage of the transformer is 240 V. The transformer secondary have two outputs which are 4100 V (Helix) and 2050 V (Collector). Total output power is 860 W. Normal operating frequency of the transformer is 10 kHz. In high energy density pulse transformers, temperature rise is a main problem during its operation. From our study, it was found that resonant current due to leakage inductance and stray capacitance was the main cause of temperature rise. This happens because of the inherently high turn-ratio in high voltage transformers. Solutions to reduce stray components are presented.

  • PDF

Analysis and Design of a Bidirectional Cycloconverter-Type High Frequency Link Inverter with Natural Commutated Phase Angle Control

  • Salam, Zainal;Lim, Nge Chee;Ayo, Shahrin Md.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.677-687
    • /
    • 2011
  • In this paper a cycloconverter-type high frequency transformer link inverter with a reduced switch count is analyzed and designed. The proposed topology consists of an H-bridge inverter at the transformer's primary side and a cycloconverter with three bidirectional switches at the secondary. All of the switches of the cycloconverter operate in non-resonant zero voltage and zero current switching modes. To overcome a high voltage surge problem resulting from the transformer leakage inductance, phase angle control based on natural commutation is employed. The effectiveness of the proposed inverter is verified by constructing s 750W prototype. Experimentally, the inverter is able to supply a near sinusoidal output voltage with a total harmonic distortion of less than 1%. For comparison, a PSpice simulation of the inverter is also carried out. It was found that the experimental results are in very close agreement with the simulation.

고효율 공진형 비대칭 하프브리지 플라이백컨버터 (High Efficiency Resonant Asymmetrical Half-Bridge Flyback Converter)

  • 정강률;유두희
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.81-94
    • /
    • 2010
  • 본 논문에서는 고효율 공진형 비대칭 하프브리지 플라이백컨버터가 제안된다. 컨버터의 1차측 하프브리지 회로는 공진커패시턴스와 변압기 누설인덕턴스를 이용하여 비대칭 펄스폭변조(PWM; Pulse-Width Modulation) 방식에 의한 소프트스위칭 형태로 동작한다. 그리고 컨버터 2차측의 플라이백 회로는 간단한 구동회로에 의해 새로운 전압구동방식으로 동작하는 동기정류기를 이용한다. 제안된 컨버터는 이렇게 하여 컨버터의 전체효율을 향상시킨다. 또한 본 논문에서는 제안된 컨버터의 동작원리를 모드별로 설명하고 컨버터 설계 시의 고려사항과 프로토타입 컨버터의 설계 예를 각각 제시한다. 그리고 본 논문에서 제안하는 전압구동방식으로 동작하는 동기정류기의 간단한 구동기법에 관하여 간략하게 설명한다. 설계된 프로토타입 컨버터는 광범위 입력전압(교류 $V_{in,rms}$=75~265[V])이 가능하며 5[V]의 직류 출력전압과 100[W]의 출력전력을 가진다. 제안된 컨버터의 우수한 성능을 입증하기 위하여 설계된 파라미터로써 프로토타입 컨버터를 제작하여 실험하였으며, 이를 통하여 제안된 컨버터의 우수한 성능을 보인다.

AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터 (Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter)

  • 윤선재;김영호;정용채;원충연
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

변압기 직렬구조의 EV용 승압형 양방향 ZCS DC/DC 컨버터 개발 (Development of Boost Type Bidirectional ZCS DC/DC Converter For EV of Transformer Series Construction)

  • 최정식;박병철;정동화;송성근
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.37-46
    • /
    • 2013
  • This paper proposes the boost type bidirectional zero current switching(ZCS) DC/DC converter of transformer series construction for electric vehicle operation using low voltage battery. This converter can high boost through the double voltage circuit and series construction of output part using two converters. This converter system has the advantages that bidirectional power transfer is excellent, size and making of transformer because of this converter keeps the transformation ratio to 1:1. Proposed DC/DC converter uses the ZCS method to decrease the switching loss. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer and half-bridge capacitor it reduces system size and expense because of not add special reactor. It can confirm to output of high voltage to operate the electric vehicle with low voltage of input and operation of ZCS in all load region through the result of PSIM simulation and experiment.