• 제목/요약/키워드: Leakage Reduction

검색결과 483건 처리시간 0.034초

Influences of Plasma Treatment on the Electrical Characteristics of rf-magnefrom sputtered $BaTa_2O_6$ Thin Films (플라즈마 표면 처리가 $BaTa_2O_6$박막의 전기적 특성에 미치는 효과에 관한 연구)

  • Kim, Young-Sik;Lee, Yun-Hi;Ju, Byeong-Kwon;Sung, Mang-Young;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제48권5호
    • /
    • pp.319-325
    • /
    • 1999
  • Direct current(d.c.)leakage current voltage characteristics of radio-frequencymagnetron sputtered BaTa\sub 2\O\sub 6\ film capacitors with aluminum(A1) top and indium tin oxide (ITO) bottom electrodes have been investigatedas a function of applied field and temperature. In order to study surfacetreatment effect on the electrical characteristics of as-deposited film weperformed exposure of oxygen plasma on $BaTa_2O_6$ surface. d. c.current-voltage (I-V), bipolar pulse charge-voltage (Q-V), d. c. current-time (I-t) andcapacitance-frequency (C-f) analysis were performed on films. All ofthe films exhibita low leakage current, a high breakdown field strength (3MV/cm-4.5MV/cm), and high dielectric constant (20-30). From the temperature dependence of leakage current,we can conclude that the dominant conduction mechanism is ascribed toSchottky emission at high electric field (>1MV/cm) and hopping conduction at lowelectric field (<1MV/cm). According to our results, the oxide plasma surfacetreatmenton as-deposited $BaTa_2O_6$ resulted in lowering interfacebarrier height and thus, leakage current when a negative voltage applied to the A1 electrode. This can be explained by reduction of surface contamination via etching surface and filling defects such as oxygen vacancies.

  • PDF

Leakage detection and management in water distribution systems

  • Sangroula, Uchit;Gnawali, Kapil;Koo, KangMin;Han, KukHeon;Yum, KyungTaek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.160-160
    • /
    • 2019
  • Water is a limited source that needs to be properly managed and distributed to the ever-growing population of the world. Rapid urbanization and development have increased the overall water demand of the world drastically. However, there is loss of billions of liters of water every year due to leakages in water distribution systems. Such water loss means significant financial loss for the utilities as well. World bank estimates a loss of $14 billion annually from wasted water. To address these issues and for the development of efficient and reliable leakage management techniques, high efforts have been made by the researchers and engineers. Over the past decade, various techniques and technologies have been developed for leakage management and leak detection. These include ideas such as pressure management in water distribution networks, use of Advanced Metering Infrastructure, use of machine learning algorithms, etc. For leakage detection, techniques such as acoustic technique, and in recent yeats transient test-based techniques have become popular. Smart Water Grid uses two-way real time network monitoring by utilizing sensors and devices in the water distribution system. Hence, valuable real time data of the water distribution network can be collected. Best results and outcomes may be produced by proper utilization of the collected data in unison with advanced detection and management techniques. Long term reduction in Non Revenue Water can be achieved by detecting, localizing and repairing leakages as quickly and as efficiently as possible. However, there are still numerous challenges to be met and future research works to be conducted in this field.

  • PDF

Comparative Analysis of Shallow and Deep Groundwater Pumping Effects on Stream Depletion (천부와 심부지하수 양수에 따른 하천수 감소 영향의 비교분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제40권4호
    • /
    • pp.383-391
    • /
    • 2020
  • In this study, Hunt's analytical solution and Ward & Lough's analytical solution for two-layered leaky aquifer system were used to estimate stream depletions due to shallow and deep groundwater pumping, and their differences were compared. Depending on the combination of the separation distance between the stream and the well, the transmissivity and the storage coefficient of the aquifer, and the leakage coefficient between the upper and lower layers, the stream depletion, which is the amount of stream water reduction compared to the amount of groundwater pumping, for each of 45,000 cases was calculated for both shallow and deep groundwater pumping, and the differences were analyzed quantitatively. When the leakage coefficient was very small, with a value of 10-61/d, the difference in the average five-year stream depletion due to the pumping of shallow and deep groundwater showed a large deviation of up to 0.9 depending on the given hydraulic characteristics; this value exponentially decreased as the stream depletion factor (SDF) increased. This exponential relationship gradually weakened as the leakage coefficient increased due to interaction effects between layers, resulting in a small difference of up to 0.2 when the leakage coefficient reached 10-31/d. Under the condition of greater interlayer hydraulic connectivity, there was little influence of the depth of groundwater pumping on the stream water reduction.

Treatment of intractable parotid sialocele occurred after open reduction-fixation of mandibular subcondylar fracture

  • Hwang, Jungil;You, Yong Chun;Burm, Jin Sik
    • Archives of Craniofacial Surgery
    • /
    • 제19권2호
    • /
    • pp.157-161
    • /
    • 2018
  • A sialocele is a subcutaneous cavity containing saliva, most often caused by facial trauma or iatrogenic complications. In subcondylar fractures, most surgeons are conscious of facial nerve injury; however, they usually pay little attention to the parotid duct injury. We report the case of a 41-year-old man with a sialocele, approximately $5{\times}3cm$ in size, which developed 1 week after subcondylar fracture reduction. The sialocele became progressively enlarged despite conservative management. Computed tomography showed a thin-walled cyst between the body and tail of the parotid gland. Fluid leakage outside the cyst was noted where the skin was thin. Sialography showed a cutting edge of the inferior interlobular major duct before forming the common major duct that seemed to be injured during the subcondylar fracture reduction process. We decided on prompt surgical treatment, and the sialocele was completely excised. A duct from the parotid tail, secreting salivary secretion into the cyst, was ligated. Botulinum toxin was administrated to block the salivary secretion and preventing recurrence. Treatment was successful. In addition, we found that parotid major ducts are enveloped by the deep lobe and extensive dissection during the subcondylar fracture reduction may cause parotid major duct injury.

Study on 3D Numerical Analysis of Stack Effect Reduction in Stairwell of Building (건축물 계단에서의 연돌효과 저감방안에 대한 3차원 수치해석 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제27권3호
    • /
    • pp.152-157
    • /
    • 2015
  • Stack effect on high-rise building have negative effect on living environment, energy and life-safety aspect. Thus, it's necessary to find the measure to reduce the stack effect. As a result of field test on a 31-story building, a circulating type stack effect reduction technology was developed, which supplies air in the low stairs and discharges air in the high stairs. To evaluate the performance of this circulating type stack effect reduction technology on building stairs, a 3D numerical analysis was carried out by using Momentum Loss Model for analyzing leakage flow between compartments in a building. Consequently, numerical analysis proved that the stack effect on building stairs was reduced by a circulating type stack effect reduction technology.

Greenhouse Gas Emission Analysis by LNG Fuel Tank Size through Life Cycle

  • Park, Eunyoung;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.393-402
    • /
    • 2021
  • As greenhouse gas emissions from maritime transport are increasing, the International Maritime Organization is continuously working to strengthen emission regulations. Liquefied natural gas (LNG) fuel is less advantageous as a point of CO2 reduction due to the methane leakage that occurs during the bunkering and operation of marine engines. In this study, greenhouse gas emissions from an LNG-fueled ship were analyzed from the perspective of the life cycle. The amount ofmethane emission during the bunkering and operation procedures with various boil-off gas (BOG) treatment methods and gas engine specifications was analyzed by dynamic simulation. The results were also compared with those of other liquid fuel engines. As a result, small LNG-fueled ships without a BOG treatment facility emitted 32% more greenhouse gas than ships utilizing marine gas oil or heavy fuel oil. To achieve a greenhouse gas reduction via a BOG treatment method, a gas combustion unit or re-liquefaction system must be mounted, which results in a greenhouse gas reduction effect of about 25% and 30%. As a result of comparing the amount of greenhouse gas generated according to the BOG treatment method used with each tank size from the perspective of the operating cycle with the amounts from using existing marine fuels, the BOG treatment method showed superior effects of greenhouse gas reduction.

Reduction of DC-link Capacitance for Single-Phase Transformerless Photovoltaic Power Converters (절연형 단상 태양광 PCS의 직류링크 커패시터 저감)

  • Nguyen, Hoang Vu;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.365-366
    • /
    • 2016
  • This paper presents a single-phase transformerless photovoltaic (PV) power converter systems based on the AC/DC boost inverter, which is capable of solving the leakage current and second-order ripple power issues. By eliminating the inherent ripple power in single-phase inverter, the bulky electrolytic capacitor can be replaced by a small film capacitor. The validity of the proposed scheme has been verified by the simulation results.

  • PDF

Development and Characteristics Evaluation of Polymer Housing Type Arresrter (폴리머 housing형 피뢰기의 개발과 특성 평가)

  • 조한구;김인성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 1997
  • This paper describes the development of new type arrester for 22.9kV class distribution lines, with polymer insulating materials applied to their housings. The new arrester employs silicone insulating material for its housing, instead of the conventional porcelain housing, aiming at reduction in size and weight and explosion proof against internal short circuit failure. And, since the design of sheds is not restricted. it is possible to provide a long surface leakage distance per strike length and improve anti-contamination performance.

  • PDF

Possibility of Si TFT Technology

  • Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.31-33
    • /
    • 2002
  • Si TFTs are applied not only to stacked SRAM but also to FPD. Improvement of device characteristic such as an enhancement of carrier mobility or a reduction of leakage current is studied intensively. The TFT technology is developing based on conventional Si LSI technology. By establishing a stable fabrication process on flexible substrate and high performance characteristic uniformly and reliably, TFT technology has a possibility to develop to SOP or other highly functional applications similar to or beyond the conventional Si LSI in the era of information and telecommunication.

  • PDF