• 제목/요약/키워드: Leakage Analysis

검색결과 2,016건 처리시간 0.03초

Air Similarity Test and Analysis of Steam Turbine Labyrinth Seal for Leakage Verification (스팀터빈용 래비린스 실의 누설량 규명을 위한 공기상사 실험 및 해석)

  • Ahn, Sang-Kyu;Kim, Seung-Jong;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Wong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1149-1149
    • /
    • 2006
  • The leakage characteristic is an important factor in power plant. However, most of power plant have efficiency problem which is occurred leaking between high pressure steam turbine axle and stator. The labyrinth seal which is used between the main turbine axle and stator in the power plant. Because it is able to be non-contact seal and it is minimize clearance to decrease the leakage. But its actual system is too huge to experiment. Therefore, most steam turbine seal performance tests were conducted by air similarity test. This paper described a test facility and program for air similarity test of high pressure steam turbine seal. A test facility has been designed and built to evaluate leakage verification of labyrinth seal. The test facility consist of air compressor, anti-swirl labyrinth seal for 1/3 air similarity model, pressure transducer, air flow measure system, instrumentation and auxiliary system. For evaluation of steam turbine seal performance, the air similarity test of labyrinth seal leakage verification was conducted and we compared experiment data and analysis result.

  • PDF

A COUPLED CFD-FEM ANALYSIS ON THE SAFETY INJECTION PIPING SUBJECTED TO THERMAL STRATIFICATION

  • Kim, Sun-Hye;Choi, Jae-Boong;Park, Jung-Soon;Choi, Young-Hwan;Lee, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.237-248
    • /
    • 2013
  • Thermal stratification has continuously caused several piping failures in nuclear power plants since the early 1980s. However, this critical thermal effect was not considered when the old nuclear power plants were designed. Therefore, it is urgent to evaluate this unexpected thermal effect on the structural integrity of piping systems. In this paper, the thermal effects of stratified flow in two different safety injection piping systems were investigated by using a coupled CFD-FE method. Since stratified flow is generally generated by turbulent penetration and/or valve leakage, thermal stress analyses as well as CFD analyses were carried out considering these two primary causes. Numerical results show that the most critical factor governing thermal stratification is valve leakage and that temperature distribution significantly changes according to the leakage path. In particular, in-leakage has a high possibility of causing considerable structural problems in RCS piping.

Diagnosis Technique of Surface Aging according to Various Environment Condition for Silicon Polymer Insulator (여러환경조건에 의한 Silicon애자의 표면열화 진단기술)

  • Park, Jae-Jun;Jung, Myeong-Yeon;Lee, Seung-Wook;Kim, Jeong-Boo;Song, Young-Chul;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.76-81
    • /
    • 2004
  • This paper presents the results of spectral analysis of leakage current waveforms on contaminated insulators under various fog and environment conditions(salt fog, clean fog, rain) The larger the leakage current during 200ms, the higer the power spectrum at 60Hz. For almost equal maximum current during 200ms, however, the spectrum at 60hz and the odd order harmonics increase emphatically when discharges occur continuously for several half-waves. If contaminated insulators suffers from high salt-density fog, the leakage current occurs with high crest value intermittently, results in the low spectrum. Analysis of leakage current data showed that this electrical activity was characterized by transient arcing behavior contaminants are deposited on the insulator surface during salt fog tests. This provides a path for the leakage current to flow along the surface of the insulator. It is important to have an indication of the pollution accumulation in order to evulate the test performance of a particular insulator. If the drop in surface resistivity is severe enough, then the leakage current may escalate into s service interrupting flashover that degrade power quality.

  • PDF

A Study on SmartPhone Hacking and Forensic of Secondary Damage caused by Leakage of Personal Information (개인정보유출 2차 피해로 인한 스마트폰 Smishing 해킹과 Forensic 연구)

  • Park, In-woo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.273-276
    • /
    • 2014
  • In 2014, the leakage of personal information from 3 credit card companies resulted in divulging approximately 10,000 customers' personal information. Although the credit card companies concluded that there was no secondary loss due to the leakage of personal information, secondary financial losses resulting from the leakage of personal information currently occur. In particular, hackers who employ smishing masquerade acquaintances by using the divulged personal information to ask payment for Ms. Kim's Sochi Olympics legal processing or exposed traffic violations. The hackers cause secondary financial losses through smartphones. This study aims to conduct a forensic analysis of smishing incidents in smartphones through the leakage of personal information, and to make a forensic analysis of financial losses due to the smishing incidents.

  • PDF

Estimation of Accident Probability for Dynamic Risk Assessment (동적 위험 분석을 위한 사고확률 추정 방법에 관한 연구)

  • Byeong-Cheol Park;Chae-Og Lim;In-Hyuk Nam;Sung-Chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제26권2_2호
    • /
    • pp.315-325
    • /
    • 2023
  • Recently, various dynamic risk analysis methods have been suggested for estimating the risk index by predicting the possibility of accidents and damage. It is necessary to maintain and support the safety system for responding to accidents by continuously updating the probability of accidents and the results of accidents, which are quantitative standards of ship risk. In this study, when a LNG leakage that may occur in the LN G Fuel Gas Supply System (FGSS) room during LN G bunkering operation, a reliability physical model was prepared by the change in monitoring data as physical parameters to estimate the accident probability. The scenario in which LNG leakage occur were configured with FT (Fault Tree), and the coefficient of the covariate model and Weibull distribution was estimated based on the monitoring data. The possibility of an LNG leakage, which is the top event of FT, was confirmed by changes in time and monitoring data. A method for estimating the LNG leakage based on the reliability physical analysis is proposed, which supports fast decision-making by identifying the potential LNG leakage at the accident.

An Analysis on the Leakage Current of Drain-offset Poly-Si TFT′s (드레인오프셋트 다결정실리콘 박막트랜지스터의 누설전력 해석)

  • 이인찬;김정규;마대영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제14권2호
    • /
    • pp.111-116
    • /
    • 2001
  • Poly-Si TFT's(Polysilicon thin filmtransistors) have been actively studied due to their applications in active matrix liquid crystal displays and active pull-up devices of CMOS SRAM's. For such applications, the leakage current has to be in the range of sub-picoampere. However, poly-Si TFT's suffer from anomalous high leakage currents, which is attributed to the emission of the traps present at gain boundaries in the drain junction. The leakage current has been analyzed by the field emission via grain-boundary traps and thermionic field emission over potential barrier located at the grain boundary. We found that the models proposed before are not consistent with the experimental results at far as drain-offset poly-Si TFT's we fabricated concern. In this paper, leakage current of drain-offset poly-Si TFT's with different offset lengths was studied. A conduction model based on the thermionic emission of the tunneling electrons is developed to identify the leakage mechanism. It was found that the effective grain size of the drain-offset region is important factor in the leakage current. A good agreement between experimental and simulated results of the leakage current is obtained.

  • PDF

Measurement Method of the Resistive Leakage Current for Lightning Arrester Diagnosis

  • Kil, Gyung-Suk;Han, Ju-Seop;Song, Jae-Yong;Seo, Hwang-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권2호
    • /
    • pp.63-66
    • /
    • 2005
  • Several ways for monitoring the soundness of ZnO lightning arresters have been suggested, and all of which are based on the measurement of leakage current since it is well known that the resistive leakage current is a main indicator of arrester deterioration. In this paper, we proposed an algorithm to measure the resistive leakage current, which is quite different from the conventional method that eliminates capacitive current from the total leakage current. The proposed algorithm is based on that the magnitudes of the resistive leakage current are equal at the same applied voltage levels. To confirm the reliability of the algorithm, we fabricated a leakage current detector and designed an analysis program. Experimental results showed that the method does not need a complex circuitry and is useful to analyze the resistive leakage current.

Characteristic Analysis of Spiral-Grooved Pump Seal (나선 홈 펌프 시일의 특성 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.799-804
    • /
    • 2002
  • In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator are performed. For developing a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressure flow through the spiral groove. Results by the present analysis are compared with available experimental data. For leakage the analysis results generally show a reasonable agreement to the experimental results. For rotordynamic coefficients the analysis results show the same trend as the experimental results for rotor speed with spiral angles, but their magnitudes show somewhat large deviations.

  • PDF

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Improvement on Prediction of Circumferential-Groove-Pump Seal with CFD Analysis (CFD를 사용한 평행 홈 펌프 시일의 해석 개선)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.291-296
    • /
    • 2008
  • In order to improve the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator, CFD analysis using FLUENT has been performed to determine the groove penetration angle a which is the angle of separation line between control volumes II and III in groove section of Ha and Lee's three-control-volume theory. Validation to the present analysis using new penetration angle determined by the CFD analysis is achieved by comparisons with the results of published Ha and Lee's analysis. For the leakage prediction the present analysis shows slight improvement and CFD results yields the best. Direct damping and cross-coupled stiffness coefficients are predicted better to the experimental ones. However, direct stiffness coefficient is predicted worse.