• 제목/요약/키워드: Leak Before Break Assessment

검색결과 13건 처리시간 0.022초

LEAK-BEFORE-BREAK ANALYSIS OF THERMALLY AGED NUCLEAR PIPE UNDER DIFFERENT BENDING MOMENTS

  • LV, XUMING;LI, SHILEI;ZHANG, HAILONG;WANG, YANLI;WANG, ZHAOXI;XUE, FEI;WANG, XITAO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.712-718
    • /
    • 2015
  • Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from $280^{\circ}C$ to $450^{\circ}C$. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elasticeplastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.

이종금속 오버레이 용접 배관의 파단전누설균열 해석을 위한 단순 유한요소 모델링 방법 (A Simple Finite Element Modeling Method for Leak-Before-Break Crack Analysis of Pipe with Overlay Dissimilar Metal Weldments)

  • 김만원;박영섭
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.70-76
    • /
    • 2013
  • Several finite element models for the leak-before-break (LBB) assessment of overlay dissimilar metal weldment were constructed and analyzed to develop a simple finite element modeling method. The J-integral, crack opening displacement (COD) and J-integral distribution along the crack front in thickness direction due to the applied moment were obtained from the analysis results of the constructed finite element models, and studied compared to the previous literatures. It is concluded that the modeling with base material only is simple and produces a slightly conservative results compared to the complex modeling composed with weld metal and base metal in the calculation of J-integrals and COD values which are used for the calculation of fracture toughness and postulated leakage crack length respectively.

CANDU 압력관 건전성평가를 위한 결함해석 (Defect Assessment for Integrity Evaluation of CANDU Pressure Tubes)

  • 김영진;석창성;박윤원
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.731-740
    • /
    • 1995
  • The objective of this paper is to develop defect assessment technology for integrity evaluation of CANDU pressure tubes. In fracture mechanics analysis, three-dimensional and two-dimensional (line-spring model) finite element analyses were performed to obtain the stress intensity factor for axial and circumferential surface cracks. In leak before break (LBB) analysis, heat transfer analyses for through-wall cracks were performed by considering the cooling effect and the LBB application time was computed. It was shown that the analytical results obtained in this study provide less-conservative but accurate solution for defect assessment of CANDU pressure tubes.

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

원전 배관 파단전누설 평가를 위한 탄소성 파괴역학 평가 프로그램 개발 (Development of Elastic-Plastic Fracture Mechanics Evaluation Program for Leak-Before-Break Analysis of Nuclear Piping)

  • 박준근;허남수;김예지;이상민
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.35-46
    • /
    • 2020
  • In this paper, a fracture mechanics evaluation system which can be used to assess the leak-before-break (LBB) of nuclear piping is developed. Existing solutions for calculating the fracture mechanics parameters (J-integral and crack opening displacement) required for LBB evaluation were firstly presented. Then a module for calculating J-integral and COD was developed, with an additional module for predicting the critical load based on the crack driving force diagram to finally develop a fracture mechanics evaluation system. To confirm the validity of the proposed evaluation system, finite element (FE) analysis was performed, and the FE J-integral and COD results were compared with prediction results using the J-integral and COD estimations program. Furthermore, the critical load assessment module was verified by comparing the actual pipe test results (Battelle test data) with prediction results using the proposed program.

파단전 누설 평가를 위한 Ramberg - Osgood 상수 결정법 (Determination Method of Ramberg-Osgood Constants for Leak Before Break Evaluation)

  • 배경동;류호완;김윤재;김진원;김종성;오영진
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.645-652
    • /
    • 2015
  • 본 논문은 이전 연구에서 제시한 여러 가지 Ramberg-Osgood 상수 결정법을 비교하여 파단전 누설평가에 사용되기 가장 적합한 상수 결정법을 선정하였다. 비교에 사용한 재료는 운전온도인 $316^{\circ}C$에서 실험한 SA312 TP316 과 SA508 Gr.1a 이다. 상수 결정법을 선정하기 위해 실제 응력-변형률 데이터를 모두 이용하는 증분 소성 이론과 Ramberg-Osgood 상수를 이용하는 변형 소성이론을 유한요소 해석에 적용하여 계산한 J 적분과 균열 열림 변위를 비교하였다. 비교 결과에서 증분 소성 이론 결과와 가장 잘 일치하는 상수 결정법을 최종적으로 파단전 누설 평가에 적합한 방법으로 선정하였다.

유효탄성계수를 이용한 균열 비선형 및 재료 비선형을 고려한 파단전누설(LBB) 평가 방법 (Leak-Before-Break (LBB) Assessment Method Considering Crack Nonlinearity Using Effective Elastic Modulus and Material Nonlinearity)

  • 김만원;김성환;이의종
    • 대한기계학회논문집A
    • /
    • 제35권6호
    • /
    • pp.651-659
    • /
    • 2011
  • 최근 열출력이 향상된 신규 원자력발전소의 개발이 증가하고 있으며 배관계에 가해지는 모멘트 및 하중의 크기도 증가하는 경향이므로 배관의 파단전누설(LBB) 적용조건 여유도가 작아질 수 있다. 본 논문에서는 이러한 배관에서 LBB 적용조건을 만족시키기 위한 추가적인 여유도 확보의 한 방법으로써 균열의 비선형과 재료물성치를 고려하는 방법을 제시하였다. 균열 및 재료의 비선형을 고려하기 위하여 유한요소해석과 보(beam) 이론을 병용하였다. 원자력 배관을 모델로 하여 본 논문에서 제안한 방법으로 LBB 균열안정성 해석을 수행하였으며, LBB 여유도가 낮은 위치에서 균열 및 재료 비선형을 고려함으로 써 추가적인 LBB 여유도를 확보할 수 있음을 확인하였다.

Estimation of Leak Rate Through Cracks in Bimaterial Pipes in Nuclear Power Plants

  • Park, Jai Hak;Lee, Jin Ho;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1264-1272
    • /
    • 2016
  • The accurate estimation of leak rate through cracks is crucial in applying the leak before break (LBB) concept to pipeline design in nuclear power plants. Because of its importance, several programs were developed based on the several proposed flow models, and used in nuclear power industries. As the flow models were developed for a homogeneous pipe material, however, some difficulties were encountered in estimating leak rates for bimaterial pipes. In this paper, a flow model is proposed to estimate leak rate in bimaterial pipes based on the modified Henry-Fauske flow model. In the new flow model, different crack morphology parameters can be considered in two parts of a flow path. In addition, based on the proposed flow model, a program was developed to estimate leak rate for a crack with linearly varying cross-sectional area. Using the program, leak rates were calculated for through-thickness cracks with constant or linearly varying cross-sectional areas in a bimaterial pipe. The leak rate results were then compared and discussed in comparison with the results for a homogeneous pipe. The effects of the crack morphology parameters and the variation in cross-sectional area on the leak rate were examined and discussed.

소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가 (Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor)

  • 이사용;김낙현;구경회;김성균;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.

내압이 작용하는 직관과 엘보우의 경계면에 존재하는 원주방향 관통균열의 응력확대계수 및 탄성 균열열림변위 예측식 (Closed-Form Solutions for Stress Intensity Factor and Elastic Crack Opening Displacement for Circumferential Through-Wall Cracks in the Interface between an Elbow and a Straight Pipe under Internal Pressure)

  • 장윤영;정재욱;허남수;김기석;조우연
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.553-560
    • /
    • 2015
  • Fracture mechanics analysis for cracked pipes is essential for applying the leak-before-break (LBB) concept to nuclear piping design. For LBB assessment, crack instability and leak rate should be predicted accurately for through-wall cracked pipes. In a nuclear piping system, elbows are connected with straight pipes by circumferential welding; this weld region is often considered a critical location. Hence, accurate crack assessment is necessary for cracks in the interface between elbows and straight pipes. In this study, the stress intensity factor (SIF) and elastic crack opening displacement (COD) were estimated through detailed 3D elastic finite element (FE) analyses. Based on the results, closed-form solutions of shape factors for calculating the SIFs and elastic CODs were proposed for circumferential through-wall cracks in the abovementioned interfaces under internal pressure. In addition, the effect of the elbow on shape factors was investigated by comparing the results with the existing solutions for a straight pipe.