• Title/Summary/Keyword: Leaf water content

Search Result 597, Processing Time 0.03 seconds

EFFECT OF SOIL MOISTURE CONTENTS ON THE GROWTH, AND CHEMICAL CONSTITUENTS OF BURLEY TOBACCO AND ON THE PROTEIN PATTERN IN TOBACCO LEAF (토양수분 함량차이가 버어리종 담배의 생육, 내용성분 및 단백질 Pattern에 미치는 영향)

  • 김용규;김요태;김대송;최선영;류익상
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 1986
  • This study was carried out to investigate the effect of different soil moisture contents on the growth and chemical constituents of burley tobacco and on the protein pattern in tobacco leaf. Height, stem diameter, and largest leaf length of tobacco droughted from 45 to 60 days after transplanting was not recovered by rewatered amount of water supply from 60 to 75 days after transplanting, but leaf width enlarged. Dry weight per unit leaf area and total nitrogen content showed high values in low soil moisture, but total alkaloid contents were not different according to soil moisture contents. Soil moisture content didn't effect on the protein pattern of middle and upper leaves, but lower leaves showed the mild color and fewer numbers of the protein bands than those of midd1e and upper leaves.

  • PDF

Chemical Compositions of Korean Ginseng with Special Reference to the Part of Ginseng Plant (고려인삼의 부위별 성분함량)

  • 장진규;이광승
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 1987
  • The contents of some chemical constituents in several parts of Panax ginseng were investigated. Each part of ginseng was extracted with 70% ethanol and then water. The yield of extract was the highest in fine root, and relatively low in roughly dried ginseng and white ginseng, On the other hand, the contents of total sugars in white ginseng and seedling ginseng were high, but low in leaf and peel. The contents of crude protein in roughly dried ginseng and white ginseng were high, but those in leaf, rhizome (nod) and peel were low. The content of crude fat was higher in leaf than in other parts of ginseng plants and that was the lowest in fine root. Among free sugars, the content of fructose was high in leaf and rhizome, but that was the lowest in fine root. In the case of glucose content, leaf contained the highest amount, but fine root did the lowest. Sucrose contents in white, roughly dried and lateral roots were high, whereas that in leaf was low.

  • PDF

Effect of Paclobutrazol on Growth, and High Temperature and Drought Stress in Perennial Ryegrass (Paclobutrazol 처리가 Perennial Ryegrass의 생육 및 고온과 건조 Stress에 미치는 영향)

  • 김태일;구자형;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1989
  • This study was conducted to investigate the effect of paclobutrazol [(2 RS , 3 RS )1-(4- chlor-ophenyl )-4, 4- dimethyl -2- (1, 2, 4- triazol -1- yl )- pentan -3-01] on the tolerance of hi-gh temperature and drought stress as related to growth retardation , iranspiration rate , soil water content , nitrogen level and photosynthetic rate in perennial ryegrass ( Loliurn perenne L . ' Omega H , ). Plants were given a 30 ml soil drench of paclohutrazol at the concentrations of 0, 0.01, 0.1, 1.0, 10.. 0, mg / 6 .5cm- diameter pot . The rcsults were as follows : 1. Increasing concentrations of paclohutrazul reduced plant height , leaf area , fresh weight and dry weight , hut increased chlorophyll content per unit area . The number of tillers and leaf width were not affected hy the paclobutrazol concentrations . 2. The proper concentration of paclohatrazol on growth retardation in perennial ryegrass was about I mq /pot , hut leaf deformity and severe growth retardation were shown at high concentration of 10 mq / pot . 3. Perennial ryegrasses grown at 30˚C were shown significantly short plant height and low leaf nitrogen level compared with those grown at 20˚C. Increasing concentrations of paclohutrazol at 20˚C increased nitrogen level hut it could not increase nitrogen level at 30˚C . 4. During the drought stress , increasing temperatures significantly promoted transpiration rate and wilting time . It took about 5 days at 20˚C and 3 days at 30˚C to reach wilting time of leaves from water stress treatment . Soil water contents at wilting time of non-treated controls were averaged 6. 871% at 20˚C and 6. 17% at 30˚C 5. Paclohutrazol reduced transpiration rate at high temperature and drought stress . Wilting appeared at the lower water content of soil according to increasing concentrations of paclobutrazol at 30˚C hut there were no differences among concentrations of at 20˚C. 6.Paclohutrazol treatment at 1 rag /pot reduced injury rate of leaves from 67.1 % and 100 % in control plants to 15.7% and 80% at 20˚C and 3010, respectively. 7. Photosynthetic rate per unit area was significantly reduced at high temperature . Paclohutrazol stimulated photosynthetic rate with increase of concentrations at 20˚C but there was no increasing effect at 30˚C.

  • PDF

Water Deficit in Salt- and Drought- stressed Rice (Oryza sativa L.) Seedlings (염과 건조처리에 따른 벼 유묘의 수분결핍)

  • Kang, Dong-Jin;Ishii, Ryuichi;Lee, In-Jung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.21
    • /
    • pp.1-9
    • /
    • 2003
  • Plants are often subjected to periods of soil and atmospheric water deficit during their life cycle. To find critical levels for identification of tolerant rice variety to salt- and drought-stresses, we investigated the water deficiency in the leaf of a Dongjinbyeo (DJ) cultivar, identified as intolerant variety, subjected to NaCl- and Polyethylene glycol 6000 (PEG)- treatments. The relative water content and water potential in leaf of DJ plant sharply declined along the high concentration and time after treatment in NaCl- and PEG-treated rice plants. To elucidate the method of simple screening of tolerant variety to salt- and drought-stresses, we examined the relationship between relative water content and water potential of leaves in NaCl- and PEG-treated rice plants. The relationship between relative water content and water potential in leaf of DJ plant showed the highest correlation in 80 mM NaCl-treatment, and showed high correlation only 8% PEG treatment. These results indicate that the critical level of salt stress for screening of tolerant rice was 80 mM NaCl at 48 h after NaCl treatment, and the critical concentration of drought stress for screening of tolerant rice was 8% PEG at 96 h after PEG treatment.

  • PDF

Quality Characteristics of Noodles added with Moringa oleifera Leaf Powder (모링가 잎 분말을 이용하여 제조한 국수의 품질 특성)

  • Kim, Sun-Young;Chung, Chang-Ho
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.3
    • /
    • pp.321-331
    • /
    • 2017
  • This study investigated the quality of noodles added with Moringa oleifera leaf powder. Noodles were prepared at ratios of 0% (control), 2%, 4%, 6%, and 8% (w/w) Moringa oleifera leaf powder based on flour weight. Land a value of uncooked noodles decreased while b value increased (p<0.001) with the addition of Moringa oleifera leaf powder. Further, L and a value of the cooked noodles decreased while b value increased (p<0.001). Weight, volume, and water absorption of cooked noodles increased with increasing addition of Moringa oleifera leaf powder (p<0.001). pH value of soups decreased while turbidity of soups increased (p<0.001) as amount Moringa oleifera leaf powder increased. Hardness (p<0.001), cohesiveness (p<0.001), chewiness (p<0.001), and adhesiveness (p<0.05) increased significantly while springiness decreased (p<0.01) with increasing addition of Moringa oliefera leaf powder. Total polyphenol content, total flavonoid content, and DPPH free radical scavenging activity increased with increasing addition of Moringa oleifera leaf powder (p<0.001). Noodle prepared with 4% Moringa oleifera leaf powder was the most preferred in terms of overall preference.

Influence of Different Soil Moisture on the Growth of Lespedeza bicolor (싸리나무에 있어서 수분공급량이 생장에 미치는 영향)

  • 이호준
    • Journal of Plant Biology
    • /
    • v.18 no.4
    • /
    • pp.143-149
    • /
    • 1975
  • For the evaluation of drought resistance of the plant, the growth of Lespedeza bicolor Turcz. var. japonica Nakai was analyzed by the control of water content of soil: 1. The growth of leaf, stem and root showed high value in accordance with the increase of soil water content. 2. The formation of nodule was alos increased as the content of soil water became higher. 3. The highest water content of the plant was shown in the plots of 30 and 40% of water centent in soils and in the middle of the growing period (August-September). 4. The C/F ratio in the early period of the growth(July) was similar in each plot, but showed a higher value as the water centent of soil became higher at the later period(October). 5. The T/R ration increased in early period of the growth as the soil water content became higher, but it was decreased to the value of 1 in each plot.

  • PDF

Growth and Histological Characteristics of Barley (Hordium vulgare L.) Seedling to NaCl Stress (NaCl Stress에 따른 보리 유묘의 생육특성 및 세포학적 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo;Lee, Sok-Young;Park, Ki-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.335-340
    • /
    • 1998
  • This study was conducted to determine the morphological responses of barley seedlings to NaCl stress and to investigate histological changes of cells with transmission electron microscope(TEM) after NaCl stress. Plant height and root length of 10-day old barley seedlings with NaCl stress were reduced and inhibition level was found to be more severe in the plant height than in the root length. The leaf length, leaf width and leaf area were shorter as well with NaCl stress than without NaCl stress. However, there was no difference in the number of roots between NaCl treatments. The weight of dry matter decreased at higher NaCl concentrations, especially at 100mM NaCl. The water content of shoots tend to decrease at higher NaCl concentrations, but there was no difference in the water content of roots, The reduced sugar content was greatly increase than starch. Cellulose content was higher in NaCl stressed-plant than control, and tended to decreased at higher NaCl concentrations. Lignin content also decreased NaCl stressed-plant but there was no tendency at NaCl stress concentrations. Electric conductivity of cell sap with seedlings was high with NaCl stressed-plant. Amount of cell sap gradually increased with time in the roots than in the shoots, The grana of chloroplasts was changed by 150mM NaCl concentration. The christe of mitochondria in root meristematic sells ruined in structure and cell wall of leaf and root was also ruined by NaCl stress.

  • PDF

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Functional Properties and Biological Activity of Breeding Lines, Parts, and Various solvents from Acanthopanax (오갈피나무의 계통별, 부위별, 추출용매별 생리활성물질 분석 및 기능적 특성)

  • Jeong, Ji-Eun;Baek, Hyo-Eun;Oh, Duk-Sil;Wi, An-Jin;Yoon, Byeong-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.242-252
    • /
    • 2013
  • This study was evaluated to biological activity of breeding lines from Acantopanax( A. sessiliflorus: ASF, A. koreanum: AKN, A. chiicanensis: ACS, A. senticosus: AST) and parts(root, stem, fruit, and leaf) and various extracted solvents( 100% water, 100% EtOH, 50% EtOH). Total polyphenol content of AKN root in 100% water extracts was high detected 464.46 mg/100 g. Total flavonoid content in the leaf was significantly higher than in other parts. The content of total sugars was high in the 50% EtOH extracts and fruit. The major free amino acids were arginine in all extracts. The content of arginine was detected in the root of AKN(1.807 mg/100 mg). Contents of eleutheroside B, E were high detected in 100% water extracts. Antioxidative capacity in the leaves of AKN was the higher than other extracts($EC_{50}=84.8{\mu}g/mL$). The results would be useful for understanding of the physiological properties of AKN extracts.

Effects of Irrigation Times and Soil Media on the Growth and Physiological Characteristics of Native Fern Asplenium scolopendrium (관수주기와 상토조성이 자생 골고사리(Asplenium scolopendrium)의 생육과 생리에 미치는 영향)

  • Ju, Jin-Hee;Bang, Kwang-Ja
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.109-116
    • /
    • 2005
  • This study was conducted to examine the growth and physiological characteristics of Asplenium scolopendrium native fern as affected by irrigation times and soil media as an environment modeled on habitate where was sunken-condition. 1. Light intensity was lower in sunken than in non-sunken, but air humidity was higher in sunken about $2040\%$. Soil moisture content was higher with the leaf mold in sunken irrigating 2 times/week. The results of chemical analysis of medium showed that EC, pH, organic matter content, total nitrogen, CEC, Exch-Ca, Exch-Mg and Exch-K were higher with leaf mold than sud: leafmold and field soil: sud: leaf mold. 2. In the case of irrigation 2 times/week Asplenium scolopendrium grew well sunken more than non-sunken. As non-sunken condition similar with, 7 times/week irrigation, plant height, frond width, frond length and stipe length increased. In case of soil media, growth of Asplenium scolopendrium was better with leaf mold than that of sand: leafmold or field soil: sand: leaf mold. 3. In the case of irrigation 2 times/week photosynthetic rate, $CO_2$ absorption rate and water efficiency were higher with non-sunken than that of sunken, expect of stomatal conduction, $CO_2$ use efficiency. The physiological characteristics of Asplenium scolopendrium were highest in non-sunken irrigating 7 times/week In case of soil media, physiological activity was higher with leaf mold than sand: leafmold or field soil: sand: leaf mold.