• Title/Summary/Keyword: Leaf water content

Search Result 597, Processing Time 0.032 seconds

Effects of Aluminum Solution Treatment on the Growth of Forsythia koreana Cuttings (알루미늄용액 처리가 개나리삽수의 생장에 미치는 영향)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.9-11
    • /
    • 1992
  • To examine aluminum toxicity on woody plants, Forsythia koreana cuttings were grown in the aluminum solution and ground water(pH 6.75). Aluminum solution were prepared 1.0, 2.5 and 5.0mM aluminum potassium sulfate, dilulted with ground water. Shoot growth, leaf number, leaf injury and leaf chlorophyll content were measured and compared among the treatments. In all growth-related characters(shoot growth. leaf number, leaf injury and leaf chlorophyll content), differences among the treatments were highly significant. Forsythia koreana cuttings were severely stressed in aluminum solution more than 1.0mM concentration.

  • PDF

A Study on the Leaf Acidity, Bark Acidity and Water Soluble Sulfur Contents of Pinus Koraiensis in Chuncheon and Cheongpyoung (강원대 학술림과 경춘가도(청평)변 잣나무 잎과 수피의 pH및 수용성 황함량에 관한 연구)

  • Lee Sang Deok;Kim Hong Ryul;Joo Yeoung Teuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.190-195
    • /
    • 2004
  • This study investigated effects of water content in leaf, leaf acidity, bark acidity and water soluble sulfur contents by vehicle. The results were as follows: The average water content in Pinus Koraiensis leaves at Cheongpyoung and Chuncheon were 49% and 51 % respectively. The average leaf acidity and bark acidity at Cheongpyoung and Chuncheon were respectively pH 4.8 and pH 4.9 in leaf, pH 5.3 and 5.4 bark. The average water soluble sulfur content in leaves showed a significant difference between Cheongpyoung and Chuncheon of 0.133% and 0.053% respectively.

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

On the Growth and Total Nitrogen Changes of Glycine max. Artificial Plant Communities, Grown in Sandy Loam Soil withe a Controlled Moisture Content (토양함수량의 조절에 의한 Glycine max. 인공군업의 성장과 총질소량의 변동에 관하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 1971
  • Dry matter production, leaf area growth and total nitrogen changes were studied in Glycine max. soybean communities, which were grown in sandy loam soils controlled to provide various moisture levels, i.e., 5-7%(level 1), 8-10%(level 2), 11-13%(level 3), 14-15%(lev디 4), 17-20%(level 5) and 22-24%(level 6). A summary of the results is shown. The maximum dry matter production of leaves, stems and nodules and the maximum leaf area per unit area were at level 5, but the maximum of root dry matter production was at level 4. Total nitrogen content of the soybean plant decreased with growth, but each level of soil moisture content also showed a little difference. Water content of the plant decreased with plant age and soil water deficiency, especially in roots and nodules. Nodule formation increased in proportion to soil moisture content. total nitrogen content of the soil on which the soybeans grew, increased from 0.23% before sowing to 0.30% at 100 days after sowing. It seems that soil water content acts as a linear factor in the elongation or dry weight increase of shoots and roots until increasing to level 5. Considering the pattern of plant growth through analysis of the shoot and root dry weight ratio, or the photosynthetic organ and non-photosynthetic organ dry weight ratio, the asymptote of plant growth at a high soil water content exceeded that at a low soil water content.

  • PDF

Studies on the Leaf Photosynthesis of Salt-Stressed Rice Cultivars (염류처리에 따른 벼의 개엽광합성에 관한 연구)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • The effects of NaCl salinity on the leaf photosynthesis and water relation of two cultivars of rice(Oryza sativa L.) , the salt-tolerant cultivar Seohae and the salt-senstive cultivar Iri-380 were exam-ined. Two cultivars of rice were grown for 14 days in nutrient solution at SOmM NaCl. Comparing theieaf Na content of two cultlvars, Seohae showed high accumulation of Na content in the leaf blade, while Iri-380 showed low. The Na content in leaf blade reduced the rate of leaf photosynthesis. Salt-tolerant cultivar Seohae was less decreased the rate of leaf photosynthesis than salt- sensitive cultivarIri-380. And Seohae showed larger decreased the osmotic potential in the leaves than Iri-380. This in-dicates that in the salt-tolerant cultivar, osmotic adjustment is developed under saliniEation.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees (IV) - Relation between Leaf Conductance and Water Potential, Relative Water Content, and Turgor Pressure in Several Conifers - (수목(樹木)의 수분특성(水分特性)에 관한 생리(生理)·생태학적(生態學的) 해석(解析(IV) - 몇 종(種)의 침엽수(針葉樹)에 있어서 Leaf Conductance와 Water Potential, 상대함수율(相對含水率), 팽압(膨壓)과의 관계(關係) -)

  • Han, Sang Sup;Jeon, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.28-34
    • /
    • 1984
  • This study was to elucidate the relation between the water relations parameters obtained from P-V curves and stomatal closure. The results obtained are as follows: 1) The water potential at incipient plasmolysis obtained from P-V curves was similar to the water potential at critical stomatal closure. 2) The critical stomatal closure of sun leaves appear at -21 bar (-17 bar, shade leaves) in Pinus koraiensis, -20 bar in Pinus rigida, -22 bar in Pinus densiflora, and -24 bar in Larix leptolepis. On a relative water content basis, the critical stomatal closures of sun leaves appear at 85% (82%, shade leaves) in Pinus kordiensis, 77% in Pinus ragida, 85% in Pinus densiflora, and 70% in Larix leptolepis. 3) The incipient stomatal closures of sun leaves appear at -14 bar (-12 bar, shade leaves) in Pinus koraiensis, -10 bar in Pinus rigida, -15 bar in Pinus densiflora, and -6 bar in Larix leptolepis. On a relative water content basis, the incipient stomatal closures of sun leaves appear at 90% in Pinus koraiensis, 93% in Pinus rigida, 90% in Pinus densiflora, and 93% in Larix leptolepis. 4) The leaf conductance was increased by increase in volume-averaged turgor pressure was linearly increased by increase in relative water content.

  • PDF

The Effect of Cellulases on Flavonolglycosides of Ginkgo Leaf (은행잎 플라보놀배당체에 대한 셀루라제류의 영향)

  • 배기환;민병선;백흠영;안병준
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.271-276
    • /
    • 1991
  • The extractability and stability of ginkgoflavonolglycosides under presence of several cellulose preparations were investigated. The enzymes used were macerosin, cellulose C and cellulase NC. The content variation of the glycosides was measured with HPLC method, using caffeic acid as an internal standard. The methanol extract of ginkgo leaf, containing the total flavonolglycosides of 4.46%, was used for the content comparison. By extraction with the enzymes, each or mixed, the peak levels of all the glycosides began to decrease after 1 or 2 hours. After 24 hour extraction, most of the glycosides were degraded to minor components. The flavonolglycosides in ginkgo leaf were also hydrolysed simply by the water extraction. After 24 hour extraction with water at $40^{\circ}C$, the peak levels of major glycosides were distinctly decreased. Rutin was hydrolysed by enzyme treatment or by ginkgo leaf itself. As a result, it was concluded that the commercially available cellulases and the ginkgo leaf itself contain the activities of $\beta$-glycosidase and $\alpha$-rhamnosidase. Kaempferol-3-O-(6'"-O-p-coumaroylglucosyl)-rhamnoside and four other ginkgo flavonolglycosides were not hydrolysed under the same condition.tion.

  • PDF

Changes in Antioxidant Activity and Total Phenolic Content of Water Spinach (Ipomoea aquatic Forsk.) under In Vitro Biomimicking System

  • Lee, A-Young;Kim, Young-Suk;Shim, Soon-Mi
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2010
  • The purpose of current study was to examine bioaccessibility of antioxidant activity and total phenolic content in each part of water spinach (Ipomoea aquatic Forsk.). In vitro biomimicking system simulated human digestive fluid was employed in order to measure bioavailable anti-oxidative effect and phenolic content. Antioxidant activity and total phenolic content was measured by using the DPPH method and the Folin-Ciocalteu assay, respectively. Stem of water spinach had a higher DPPH free radical scavenging effect (5.43 mg/mL for $IC_{50}$) than leaf (5.95 mg/mL for $IC_{50}$), while leaf had a greater level of total phenolic content (287.45 ${\mu}g$ GAE/mL) than stem (216.45 ${\mu}g$ GAE/mL). Bioaccessible antioxidant capacity and digestive stability of total phenolic content showed a similar pattern to what found in raw materials. Our result also indicated that total phenolic content was not found to be a major marker for prediction of antioxidant activity. It is plausible that other constituents such as vitamin E and C in water spinach could be contributors for antioxidant activities.

Influence of Drought on Leaf Growth and Water Potential in Tobacco (한발이 담배 잎의 생장과 수분 포텐셜에 미치는 영향)

  • 이상각;강병화;신주식;변주섭
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.632-639
    • /
    • 1997
  • The experiment which imposed the water stress to tobacco(Nicotiana tabacum L.) plant was carried at the late of maximum growth period. In order to know the influence of drought stress on the growth and developmemt of tobacco leaves of different position and to elucidate the physiological response of plant to various soil water content, stomatal conductance, and leaf water potential were measured. The drought stress at the maximum growth period negatively affected to the overall growth characteristics of shoot. The response of the growth was small at the middle and the lower leaves, and great at the upper leaves. The relative water content of upper, middle, and lower leaves at the fifth day after treatment were 74, 64, and 59%, respectively, as soil water content was reduced by 4.3%. This suggested that the wilting point of tobacco leaf was about 75%. The leaf water potential was -0.58 MPa in control and dropped to -1.20 MPa at the fifth day after treatment. This indicated that wilting of leaf may occur at the condition in which the difference of water potential between treatment and control, well watered, was greater than about 20%. Stomatal conductance at the fifth day after treatment dropped from 12 mol /$\textrm{m}^2 sec^{-1}$ to 0.8 mol /$\textrm{m}^2 sec^{-1}$ in the middle and the upper leaves. Stomatal conductance of lower leaves already matured were not affected highly by drought stress at the maximum growth period, but maturing leaves, middle and upper leaves, were highly affected by limitation of soil water.

  • PDF

Genotypic Variation in Leaf Water Status of Soybean

  • Jin, Yong-Moon;Lee, Hong-Suk;Lee, Suk-Ha;Kwon, Yong-Woong;Im, Jeong-Nam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.55-58
    • /
    • 1999
  • Plant water status during growth is directly and indirectly associated with seed yield. The objective of the present study was to determine the genotypic differences in leaf water characteristics at an early growth stage of soybean [Glycine max (L.) Merrill] plants through the pressure-bomb technique. Measurements of water potential as well as relative water content (RWC) were made at the third leaf from the fully-expanded top leaf of eight different soybean genotypes grown for 31 to 35 days after field emergence. On the basis of the modified exponential model, pressure-volume (PV) curves were fitted well ($R^2$=0.92** to 0.99** for the curvi-linear region and R=0.67** to 0.96** for the linear region), indicating that a segmented model using PROC NLIN of SAS could be used effectively to estimate the leaf water characteristics. The regression analysis for the pressure-volume (PV) curve revealed genotypic variation in the solute potential at saturation (Ψ$_{s,sat}$ :-10.7 to -14.8 bar), solute potential at incipient plasmolysis (Ψ$_{s,ip}$ : -14.3 to -18.3 bar), RWC at incipient plasmolysis (RW $C_{ip}$ : 83.3 to 91.7%), high integrated turgor pressure from saturation to plasmolysis ( $_1$$^{b}$ : 0.39 to 0.81), and maximum volumetric modulus of elasticity ($\varepsilon$$_{max}$ : 150 to 445 bar).).

  • PDF