• Title/Summary/Keyword: Leaf water content

Search Result 597, Processing Time 0.032 seconds

A Study on Selection of SO2 Resistant Tree Species II. Artificial Acid Rain and Acid Mist Treatments (SO2에 대한 내성수종(耐性樹種)의 선발(選拔)을 위한 기초연구(基礎硏究) II. 인공산성우(人工酸性雨) 및 산성연무처리실험(算性煙霧處理實驗))

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.209-217
    • /
    • 1989
  • Seedlings of 6 tree species were treated with artificial acid rain and acid mist (pH 5.0, 4.0, 3.0) and ground water (pH 6.5), to select $SO_2$-resistant tree species. The growth variable, leaf injury rate and chlorophyll content were measured and compared among the various pH levels. Seedling height of Rosy multiflora decreased with deceasing pH levels of artificial acid rain and was tallest at control plot, but that of Ailanthus altissima was tallest at pH 5.0 plot. For the seedlings of Robinia pseudoacacia, Magnolia obovata and Wistaria floribunda, top and root dry weights per seedling at pH 5.0 plot were higher than those at control plot. Leaf injury rate(injured leaf area and injured leaf rate) increased with decreasing pH levels of artificial acid rain, the changes of leaf chlorophyll content was slightly different among tree species. Leaf chlorophyll content of Rosa multiflora, measured during the period July to September, decreased with decreasing pH levels of artificial acid rain. Leaf chlorophyll content of Magnolia obovata increased on July, but decreased severely on September, with decreasing pH levels, of artificial acid rain.

  • PDF

Antioxidative Activity of A. victorialis var. platyphyllum Extracts (산마늘 추출물의 항산화활성)

  • Chang, Jun Pok;Doh, Eun Soo;Kil, Ki Jung;Yang, Jae Kyung;Yun, Chung Weon;Lee, Gun Hee;Jung, Yun Hae;Ji, Yoon Sun;Kim, Bo Ram;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.408-416
    • /
    • 2011
  • Leaf and bulb of wild garlic (Allium victorials var. platyphyllum) from Ulleung Island and Gangneung region were extracted with water and 70% ethanol and investigated on its antioxidative activity. Total polyphenol content of Ulleung island wild garlic was higher than that of Gangneung region. Total polyphenol content in bulb was high compared to content of the leaves, and 70% ethanol extract of Ulleung Island leaf was high in 72.50 mg/g. Flavonoid content in leaf was higher than that of bulb, 70% ethanol extract of Ulleung Island leaf was high in 73.30 mg/g. Electron donating activity of 70% ethanol extract from Ulleung island and water extracts (55.13%) from Gangneung were higher than those of other extracts. Bulb extracts on electron donating activity were higher than those of the leaf extracts. SOD like activity of extracts was high in 70% ethanol extract of wild gallic leaf cultivated at Gangneung. Hydroxy radical scavenging activity of wild gallic was high in leaf extracts compared to activity of bulb extracts. Hydroxy radical scavenging activity (58.85%) of Ulleung island wild gallic leaf extracts was higher than that of the wild gallic leaves of Gangneung. Lipid peroxidation inhibitory activity was both high in water and 70% ethanol leaf extracts of Ulleung island and Gangneung region, especially, 70% ethanol extract of leaves from Ulleung island was the highest 73.33%. These results suggest that extracts from wild garlic could be used as an antioxidative functional food source.

Effect of Removing P.E film-Mulch at Budding Stage of Tobacco on the Change of Moisture and Mineral Content in Plow Layer Soil and Nutrient Uptake. (생육중반기 피복제거가 작토층의 수분 및 무기성분 변화와 연초양분흡수에 미치는 영향)

  • 홍순달;이윤환;김재정;육창수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.1
    • /
    • pp.69-78
    • /
    • 1986
  • This experiment was carried out to Investigate the environmental changes of rhizosphere, behavior of nutrient components in soul, and nutrients uptake and growth response of the tobacco plant in the condition that mulch as polyethylene film, had been removed on the ridge at the 50th day after transplanting in comparison with continuous mulching condition. The results obtained were as follows; 1. After rainfall, soil moisture content In the plow layer was greatly increased without mulch in comparison with that of the plot with mulch. As a result, leaf water potential of tobacco plant without mulch was higher than that with mulch. 2. Available nutrients such as $NH_4-N, \;NO_3-N$, and total salts in the plow layer of the plot without mulch tended to be Increased, and especially accumulated on the surface layer owing to the redistribution of soil water by rainfall during the latter growth stage after removing mulch. 3. Nutrients uptake by tobacco was much more enhanced in the plot without mulch and resulted in higher contents of total nitrogen, $NO_3-N, \;P_2O_5, \;and K_5O$ in the tobacco leaf Especially higher content of nitrogen caused the delay of maturity resulting In the increased of dry weight of top part of tobacco in the plot without mulch toned to be Increased in comparison with that in mulching condition. Content of total nitrogen, $NO_3-N$, and nicotine in flue-lured leaves was much higher in the plot without. mulch than in mulching condition, but lower content of reducing sugar in the plot without mulch resulted in lower quality of tobacco.

  • PDF

Comparison of Chemical Characteristics of Korean Mountain Ginseng Different Parts According to Extract Conditions (장뇌삼의 부위별 추출조건에 따른 이화학적특성 비교)

  • Kim, Jun-Han;Lee, Gee-Dong;Lee, In-Seon;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.720-725
    • /
    • 2006
  • This study was conducted to investigate extracting solution effect on the chemical compositions in different parts of Korean mountain Ginseng. Water, 80% EtOH and 80% MeOH are used as extraction solutions, and extracting conditions were 2 hr at $85^{\circ}C$ in water bath. The Brix(%) of the extract were ranged from $0.42{\sim}22.58%$, 80% EtOH extract for leaf is the highest level as 22.58%. The pH ranges of the extracts were $4.43{\sim}7.41$ and brown color of the extract was the highest with 1.803 in 80% EtOH extract for leaf, respectively. In case of hunter's color value of the extract, L value is the highest with 24.35 in 80% EtOH extract of seed, a and b value were the highest with 0.41 in 100% water extract of leaf and 3.69 in 80% MeOH extract of stem. Sucrose is the major free sugar of the extinct it highest content with 3673 mg% in 80% MeOH extract of mot and fructose is the highest with 1897 mg% in 80% MeOH extract of leaf, Major organic acids are identified as malic, tartaric and citric acid, and total organic acid content is the highest with 5,254 mg% in 80% MeOH extract of leaf and 1,527 mg% in 80% EtOH extract of leaf, The extracted major minerals ate P and K, P content highest with 15,563 ppm in 100% water extract of stem, K is 4,952 ppm in 80% MeOH extract of leaf, and Ca is the highest with 3,052 ppm in 1011% water extract of leaf. These results suggest that extracting solvent (80% MeOH) is concerned with the extract preparation of Korea Mountain Ginseng.

Growth and Ion Content of Korean Ginseng under Saline Condition

  • Cho, Jin-Woong;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • This study was conducted to determine the effect of salinity on the growth and development of Korean ginseng (Panax ginseng C.A.Meyer) and to evaluate the inorganic ion content in Korean ginseng with different general complete fertilizer (GCF) and NaCI concentrations at two growth stages. The stem height of Korean ginseng treated with different GCF and NaCI concentrations decreased at the higher EC (2.0 dS m$^{-1}$ ), but there were no significant difference in the stem diameter, the leaf length, and the leaf width among different treatments. The root growth increased with the supply of GCF. Especially, the root growth was facilitated two times at 3.0 dS $\textrm{m}^{-1}$ as compared to control. But the root growth more sharply decreased with NaCI treatment than GCF. The $\textrm{K}^{+}$ and $\textrm{Mg}^{2+}$ content in leaves and roots increased with GCF at the early growth stage. At the late growth stage, the $\textrm{K}^{+}$ content in leaves decreased but the $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content increased. The $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content in roots increased but the $\textrm{K}^{+}$ content decreased. The $\textrm{Na}^{+}$ content in Korean ginseng increased sharply with NaCl treatment. The $\textrm{NO}_3^{-}$ content in leaves and $\textrm{NH}_4^{+}$ content in leaves and roots increased as GCF concentration increased. The $\textrm{NO}_3^{-}$ content in leaves, stems, and roots at the late growth stage decreased as NaCl concentration increased. The $\textrm{NH}_4^{+}$ content in leaves and roots decreased significantly at the early growth stage, but it decreased significantly in leaves and stems at the late growth stage. The root activity of Korean ginseng increased with GCF, but decreased as the EC increased with NaCl. The water potential of leaves with GCF showed no significant difference compare to control, but the water potential of leaves treated with NaCl decreased as EC increased.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Investigation for Processing Conditions of Porridge with Addition of Ramie Leaf (Boehmeria nivea L) Powder Using a Response Surface Methodology (반응표면 분석법을 이용한 모시분말 첨가 비단죽 제조조건 조사)

  • Lee, Young-Tack;Im, Ji-Soon
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.841-848
    • /
    • 2012
  • Response surface methodology was applied to the processing conditions to investigate the physicochemical properties of ramie porridge. In the processing conditions based on the central composite design with the addition of ramie leaf powder (0-4 g) and water (700-1100 g), the coefficients of determination (R2) of the models were above 0.9141 for the physicochemical properties, above 0.7627 for the Hunter color parameters, and above 0.8975 for the rheological properties. The soluble solid content, viscosity, and gumminess of the sample decreased significantly with an increase in the water added, whereas the spreadability and adhesiveness increased significantly. The Hunter color L value of the sample decreased significantly with an increase in the amount of ramie leaf powder added, whereas the Hunter b value increased significantly. The estimated maximum viscosity of the ramie porridge was shown to be 24,643 cp when 1.90 g ramie leaf powder and 700.24 g water were added; the estimated maximum lightness of the ramie porridge was shown to be 59.11 when 0.02 g ramie leaf powder and 869.30 g water were added; and the estimated maximum gumminess of the ramie porridge was shown to be 21.46 g when 2.12 g ramie leaf powder and 700.35 g water were added.

Effect of CO2 Supply on Lettuce Growth

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.355-365
    • /
    • 2024
  • This study was conducted to investigate the effects of CO2 supplement on growth and quality in greenhouse lettuce cultivation. When CO2 was supplied at 1,500 ppm in lettuce cultivation, overall growth parameters such as number of leaves, leaf area, plant length, fresh weight, and dry weight were superior compared to those of the control group. While there was no significant difference in relative growth rate due to CO2 supplement, an increase in leaf area index was observed with CO2 usage. Furthermore, although there was no significant difference in the content of water-soluble vitamins such as Vitamin C, B1, B2, B5, and B6 due to CO2 supplement, the Vitamin B3 content in the CO2 treatment group was 0.5 mg/kg higher than in the control group. Therefore, the use of CO2 in lettuce cultivation resulted in increased yield and promoted growth, enabling early harvesting.

Effects of salicylic acid on growth and proline of cucumber seedlings

  • Kim, Tae-Yun;Lee, Gui-Soon;Jin, Sun-Young;Hong, Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.465-467
    • /
    • 2002
  • The effects of salicylic acid (SA) on growth and proline were investigated in cucumber seedlings. Exogenous application of SA(100 uM - 1mM) led to a noticeable decrease in root and shoot growth, and dry weights of seedlings. Anatomical observation on leaf anatomy of cucumber revealed that the thickness of all leaf tissue components decreased in SA-treated plants. The effect was most promounced on the width of the adaxial epidermis. In the separate and simultaneous effects of SA and water deficit induced by PEG on growth and proline accumulation, the water deficit treatments had greater effects on growth traits and proline content than SA. Combinations of SA and PEG decreased dry matter and root length, and resulted in higher proline in both shoots and roots than SA stress alone. Shoots had higher proline than roots.

  • PDF

Seasonal changes of nitrogen fixation and growth characteristics of kummerowia striata(thunb)schindl. populations (매듭풀 ( Kummerowia striata ( Thunb. ) Schindl. ) 개체군의 질소고정활성과 생육특성의 계절변화)

  • Song, Seung-Dal;Bae, Sang-Mee
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.377-386
    • /
    • 1992
  • Seasonal changes of symbiotic nitrogen-fixation activity and growth characteristics of four different natural populations of kummerowia striata were quantitatively analyzed during the growing period. the nitrogen-fixation activity of root nodules attained the maximum rates of 148, 132, 102 and 100$\muM\;C_2H_4\;\cdot\;g\;fw\;nodule^{-1}\;\cdot\;hr^{-1}$, respectively for sunny, multibranched, shade and unibranched populations at the optimum growth conditions. and the seasonal changes showed fluctuations by environmental conditions such as light, temperature, nutrient contents, water stress and plant ages, etc. The multibranched plant showed the greater amount of leaf and root nodule biomass, and the higher nitrogenase activity than the unibranched plant. the optimum conditions of leaf chloropht11 and water content of each organ indicated the active growth and the maximum fresh biomass of 4 different populations were 1.92, 1.85, 0.97 and 0.56 g $fw\cdotplant^{-1}$ for shade multibranched, sunny and unibranched populations, respectively.

  • PDF