• Title/Summary/Keyword: Leaf temperature

Search Result 1,249, Processing Time 0.022 seconds

Quality Characteristics of Dumpling Shells Containing Loquat Leaf Powder (비파잎 분말 첨가가 만두피의 품질 특성에 미치는 영향)

  • Park, In Duck
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.6
    • /
    • pp.795-801
    • /
    • 2012
  • This study was conducted to investigate the effects of loquat (Eriobotrya japonica Lindl.) leaf powder (LLP) on quality characteristics of dumpling shells. Dumpling shell samples were prepared with wheat flour containing different amounts of LLP, and their characteristics were then investigated. Amylography revealed that the gelatinization temperature of the LLP-wheat flours composite increased, while the initial viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes, and maximum viscosity, all decreased with increasing LLP content. As increasing amounts of LLP were added, the L and a values were reduced, whereas the b value was increased. Moreover, the addition of LLP increased hardness, cohesiveness, and adhesiveness, while it reduced springiness. Overall, sensory evaluation revealed that dumpling shells with 5% LLP were preferred more than other samples.

Effect of Root Zone Warming by Hot Water on Rhizosphere Environment and Growth of Greenhouse- grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 근권환경 및 생육에 미치는 영향)

  • 신용습;이우승;도한우;배수곤;최성국
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on rhizosphere temperature of Oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$, and non-warmed from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The cumulative soil temperature for 1 month after planting oriental melon was 441, 558, 648, and 735$^{\circ}C$ at control, 17, 21, and $25^{\circ}C$ plot, respectively. 2. As soil temperature was higher, air temperature in tunnel was higher. The lowest temperature in control plot at night was 9.5$^{\circ}C$, 11.$0^{\circ}C$ in 17$^{\circ}C$ plot, 13.5$^{\circ}C$ in 21$^{\circ}C$ plot, and 16.5$^{\circ}C$ in $25^{\circ}C$ plot, respectively. 3. The xylem exudate amount of control plot for 24 hours just after basal stem abscission was 8.1$m\ell$. It was 1.2 times higher in 17$^{\circ}C$ plot, 1.3 times higher in 21 $^{\circ}C$ plot, and 4.8 times higher in $25^{\circ}C$ plot than in control plot at 30 days after planting. The xylem exudate amount at 67 days after planting of control plot was 10.4$m\ell$, those of 17, 21, $25^{\circ}C$ plots were 1.1, 3.2, and 3.3 times as compared to control plot. 4, Early growth in leaf length, stem diameter, leaf number and leaf area for 30 days after planting were better in higher temperature plots than in control plot. Particularly, the increase of leaf area was striking in higher temperature plots. Leaf area of control plot was 279.5$\textrm{cm}^2$ for 30 days after planting, 153.4% in 17$^{\circ}C$ plot, 745.6% in 21$^{\circ}C$ plot and 879.4% in $25^{\circ}C$ plot were increased as compared to in control plot.

  • PDF

Optimization of Extraction Process for Antioxidant from Persimmon Leaf and Thistle Using Response Surface Methodology (반응표면분석법을 이용한 감잎과 엉겅퀴로부터 항산화성분의 추출공정 최적화)

  • Lee, Seung Bum;Jang, Hyun Sick;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.442-447
    • /
    • 2017
  • In this study, we extracted an antioxidant from natural products which are known to have a high antioxidant content and also optimized the extraction process by applying a response surface methodology (RSM). In addition, by measuring the total flavonoids and total polyphenols of the active ingredient extracted persimmon leaf and thistle, the functionality of the active ingredient was evaluated. Both ultrapure water and alcohol were used as extraction solvents and the ratio of ultrapure and alcohol, amount of sample, extraction time, extraction temperature were set as independence variables. Also, the yield, total polyphenols, and flavonoids was set as the response. Optimal extraction conditions were as follows; for persimmon leaf, the extraction time = 3.1 h, ratio of alcohol/ultrapure = 63.4 vol%, and temperature = $54.6^{\circ}C$ while for thistle the extraction time = 2.9 h, ratio of alcohol/ultrapure = 40.7 vol%, and temperature = $68.4^{\circ}C$. Also, the response were as follows; for persimmon leaf, the yield = 27.7%, total polyphenols = 33.2 mg GAE/g, and total flavonoids = 47.8 mg QE/mg dw, whereas for thistle the yield = 27.0%, total polyphenols = 17.9 mg GAE/g, and total flavonoids = 28.8 mg QE/mg dw at the optimal conditions. The overall satisfaction level was 71.7%.

Regional Differences of Leaf Spot Disease on Grapevine cv. 'Campbell Early' Caused by Pseudocercospora vitis in Plastic Green House (포도 캠벨얼리의 무가온 하우스재배시 지역별 갈색무늬병 발생차이)

  • Jung, Sung-Min;Park, Jong-Han;Park, Seo-Jun;Lee, Han-Chan;Lee, Jae-Wook;Ryu, Myung-Sang
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Pseudocercospora leaf spot was major disease of grape cultivar 'Campbell Early' in Korea. Leaf spot first appeared in early June and rapidly dispersed to other leaves through rainy season. Disease progress of leaf spot by Pseudocercospora vitis in plastic green house, in the two provinces (Gimje and Gimcheon), were investigated in 2007. Differences of Infected leaves (%) between cultivation systems were observed in field and plastic green house, but there was no difference between provinces. Micro environmental factors, such as temperature and relative humidity, were correlated with infected leaves by PROC REG procedure of SAS (Statistical Analysis System). As a result, regression model best described ($R^2=0.95^{**}$) the infected leaves as a function of the interaction of cumulated temperatures; Y (Infected leaves)=-7.0101+0.0496$\times$20Hcum (Cumulated hour above 20 degree)+0.0208$\times$20cum (Cumulated temperature above 20 degree)-0.2781$\times$25Hcum (Cumulated hour above 25 degree). A statistics model was shown that cumulated hour and temperature above specific degree were critical factor for Pseudocercospora leaf spot on the grapevine leaves in plastic green house.

Postharvest Changes in Quality and Biochemical Components of Leaf Lettuce (상치의 수확후(收穫後) 품질(品質) 및 성분변화(成分變化))

  • Kim, Seong Yeol;Hong, Young Pyo;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.128-138
    • /
    • 1985
  • This study was conducted to elucidate the shelf-life and quality changes in relation to biochemical components in leaf lettuce (Lactuca sativa L.). The shelf-life of leaf lettuce at room temperature was 2 to 3 days. But it was extended to 3 weeks by packaging in a 0.01 mm thick polyethylene film sack when stored at $3^{\circ}C$. The ascorbic acid contents of fresh leaf lettuce was 25 mg per 100 gram fresh weight. The acid at room temperature was almost destroyed after 4 days storage. But the contents of ascorbic acid at $3^{\circ}C$ maintained about 50 to 60% of the initial level in packaging of polyethylene film sack after 8 days storage. The content of chlorophyll was greatly decreased at room temperature but no significant changes were found at $3^{\circ}C$. The changes of total sugar and reducing sugar contents during storage were not very different between treatments. The contents of alkali soluble protein and free amino acid gradually increased in the treatments of polyethylene film sack packaging during storage in general, but the contents decreased after the increase in control treatment. Nucleic acid content, peroxidase and polyphenoloxidase activities were measured and discussed in relation to the leaf senescence.

  • PDF

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Effects of Elevated $CO_2$ and Temperature on Competition between Rice and Echinochloa glabrescens Seedlings

  • Kim, Han-Yong
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The objective of this study was to determine how elevated $CO_2$ and temperature affected early growth and competition between direct seeded rice (Oryza sativa) and a common paddy weed (Echinochloa glabrascens). By using temperature gradient chambers. Rice and E. glabrescens were grown for 5 weeks at ratios of 1:0. 3:1 and 0:1 at three temperatures ($16.4^{\circ}C,\;19.8^{\circ}C,\;and\;22.2^{\circ}C$) and either in ambient (361ppm) or elevated (566ppm) $CO_2$. For both species. elevated $CO_2$ had no effect on mainstem leaf number while air temperature had a slight positive effect which was greater in E. glabrescens than rice. With elevated $CO_2$ rice leaf area index and plant height increased alightly in all species combinations but no increases were observed for E. Glabuescens. For rice in all combinations. elevated $CO_2$ tended to increase the rot and total biomass much more than any other growth parameters: the increases in root and total biomass resulting from elevated $CO_2$ ranged from 16% to 40%. depending on air temperature. At the lowest temperature, the decrease in rice biomass in combination with E. glabrescens was significantly greater at elevated $CO_2$ (18%) than ambient $CO_2$ (3%). At the highest temperature, however, the decrease in rice biomass at elevated $CO_2$ (22%) was less than that at ambient $CO_2$ (36%). The competitive ability of rice as measured by the decrease in biomass when grown in combination with E. glabrescens depended strongly on root growth and/or allocation. These results suggest that at higher temperatures elevated $CO_2$ could enhance the competitive ability of direct seeded rice during early growth. However, at lower temperatures. the competitive ability of E. glabrescens seems to be greater.

  • PDF

Growth and Yield of Hydroponic Rose "Little Marble" as Affected by Root Zone Temperature and Heating Method in Winter Season (동계 근권 온도 및 가온방법이 양액재배 장미 "리틀마블"의 생육과 수량에 미치는 영향)

  • Lee, Mi-Young;Hwang, Seung-Jae;Jeong, Byung-Ryong
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.39-40
    • /
    • 2001
  • This experiment was conducted to investigate the effect of root zone heating on the growth of cut minirose Rosa hybrida L. ′Little Marble′ in winter season. Effects of four different root zone temperatures of 16, 20, 24$^{\circ}C$ and non-heating control on the growth and productivity were compared. Harvested cut-flowers were measured for stem length, stem diameter, fresh and dry weights, numbers of leaves, stems and flowers, days to flower, and chlorophyll concentration. The results showed that mean height was the greatest at 16$^{\circ}C$. Days to flower was the shortest at 24$^{\circ}C$. Fresh and dry weights of top (shoot+leaf+flower), shoot and leaf were the greatest at 2$0^{\circ}C$. Stem and flower numbers were the greatest at 16$^{\circ}C$, but leaf number was the greatest at 2$0^{\circ}C$. Mean cut flower yield was the greatest at 16$^{\circ}C$. Chlorophyll concentration was slightly higher at 16$^{\circ}C$, but was not significantly different among the treatments. Stem diameter was the greatest at 2$0^{\circ}C$. Dry matter was the greatest at 24$^{\circ}C$. Total yield of cut rose stems increased with increasing temperature. Combined heating could save 24% in fuel cost as compared to the air heating alone. The results obtained suggested that optimal root zone temperature for the growth of cut rose "Little Marble" was 2$0^{\circ}C$, and the greenhouse heating energy can be saved by minimal air heating combined with root zone heating to 2$0^{\circ}C$.

  • PDF

Growth Characteristics of Korean Native Kentucky Bluegrass(Poa pratensis L.) Ecotypes (국내에서 수집된 주요 왕포아풀(Poa pratensis L.)의 생육 특성)

  • Shim, Sang-Ryul;Jeong, Dae-Young;Ahn, Byung-Joon;Kim, Jae-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.69-81
    • /
    • 2010
  • The purpose of this study is to analyze the growth characteristics of native Kentucky bluegrass (Poa pratensis L.) collected in Korea. Out of Kentucky bluegrasses collected in 2000 and 2008, eight ecotypes ("Pyengchang," "Gongju," "Inje," "Donggang," "Hwasun," "Pureundle," "Cheongsong," and "Geumsan") were planted in experimental fields and pots on May 11, 2008 and May 3, 2009, respectively, for analyzing their growth characteristics. Data such as visual quality (1-9), visual density (1-9), visual color (1-9), plant height, leaf length and leaf width were analyzed. The visual quality of "Pyengchang," "Inje" and "Gongju" were enhanced compared to the rest native ecotypes of Kentucky bluegrass. "Pyengchang" showed the best visual density while "Gongju" and "Inje" showed almost evenly favorable density. However, "Pureundle," "Cheongsong," and "Geumsan" represented loose density due to the damage from the summer climate of high temperature and humidity in 2009. As for visual color, "Pyengchang" was also ranked first, maintaining high values of at least 7.6 even in the summer climate of high temperature and humidity. "Donggang" showed good color immediately after planting in the experimental field in 2008, however, undesirable color due to the damage from the summer climate of high temperature and humidity in 2009.