• Title/Summary/Keyword: Leaf photosynthetic rate

Search Result 259, Processing Time 0.028 seconds

Effects of elevated CO2 concentration and increased temperature on leaf related-physiological responses of Phytolacca insularis (native species) and Phytolacca americana (invasive species)

  • Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2010
  • In the study, the effects of elevated $CO_2$ and temperature on the photosynthetic characteristics, chlorophyll content, nitrogen content, carbon content, and C/N ratio of Phytolacca insularis and Phytolacca americana were examined under control (ambient $CO_2+$ ambient temperature) and treatment (elevated $CO_2+$ elevated temperature) for 2 years (2008 and 2009). The photosynthetic rate, transpiration rate and water use efficiency of two plant species were higher under the treatment than the under the control. The stomatal conductance of P. insularis was higher under the control, but that of P. americana was not significantly affected by $CO_2$ and temperature under the treatment. The chlorophyll contents of two species were decreased about 72.5% and 20%, respectively, by elevated $CO_2$ and temperature. The nitrogen contents of two species were not significantly altered by increase in $CO_2$ and temperature. The carbon contents of the two species were higher under the treatment than under the control. The C/N ratio of P. insularis was higher under the treatment but that of P. americana was not significantly affected by $CO_2$ and temperature. These results demonstrated that the physiological responses of P. insularis native plants might be more sensitively influenced by a $CO_2$-mediated global warming situation than those of the P. americana invasive plants.

Relationship of Nitrate Reductase Activity to Leaf Yield, Protein, Sugar and Physiological Attributes in Mulberry (Morus alba L.)

  • Ghosh, M.K.;Das, B.K.;Das, C.;Mishra, A.K.;Mukherjee, P.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.67-71
    • /
    • 2004
  • Ten improved mulberry varieties (Vl, C1730, C2016, C2017, Anantha, RFS-175, Thallaghatapura, Vishala, S1 and S1635) were evaluated through enzyme assay and estimation of soluble protein content followed by regression analysis, grown under irrigated conditions in the alluvial soils of Gangetic plains of West Bengal in India for five successive crops in a year, The nitrate reductase (EC No. 1.6.6.1) activity (NRA, $\mu$mol N $O_2$- $h^{-1}$ $g^{-1}$ fr, wt.), total soluble protein (mg $g^{-1}$ fr, wt.) was estimated which showed to vary significantly in the tested varieties. In addition to these, the other parameters like unit leaf fresh and dry weight (g), moisture %, unit leaf area ($\textrm{cm}^2$), specific leaf weight (g c $m^{-2}$ ), total soluble sugar (mg $g^{-1}$ fr, wt.), leaf yield/plant (kg), shoot yield/plant (kg) and net photosynthetic rate (NPR, $\mu$$m^{2}$ $s^{-1}$ ) were also studied which showed to vary significantly in tested varieties. Among them, S1635, haying higher NRA (13.25 $\mu$㏖ N $O_2$- $h^{-l}$ $g^{-1}$ fr, wt.), total soluble protein (39.63mg $g^{-1}$ fr, wt.), NPR(16.66 $\mu$$m^{-2}$ $s^{-1}$ ), total soluble sugar (48.44 mg $g^{-1}$ fr. wt.), leaf yield/plant (0.689 kg) and shoot yield/plant (1.135 kg) showed its superiority over other tested varieties. Regression and correlation coefficients were analysed, and a strong positive correlation was found between NRA & total soluble protein, NRA & NPR, NRA & total soluble sugar, NRA af unit leaf weight, NRA & specific leaf weight, NRA & leaf yield/plant, NRA & shoot yield/plant, NPR & leaf yield and NPR & specific leaf weight.t.

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

Effect of Wind Velocity on Photosynthesis, Sap Flux, and Damage of Leaves in Apple Trees (풍속이 사과나무의 광합성 특성과 수액이동 및 엽손상에 미치는 영향)

  • Yim, Ji Hye;Choi, Young Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • This study was carried out to determine the effects of wind speed on physiological responses in 'Fuji' apple (Malus pumila Miller). Two levels of wind blowing (3 and $5m{\cdot}s^{-1}$) were produced by large electric fans. Photosynthetic rate was reduced by one-way wind blowing treatment at $5m{\cdot}s^{-1}$, compared to the mild wind control, and this reduction was more obvious with stronger wind and increasing duration of wind application. The reduction in photosynthesis by the wind treatments was correlated with that in the proportion of opened stomates and stomatal conductance. The one-way wind treatment at $5m{\cdot}s^{-1}$ caused a leaf browning and leaf fall, and this negative effect became more serious with increasing time of exposure to the wind treatments. The sap flux through stem increased in all wind treatments compared to the natural mild wind.

Role of Awns and Leaves during Grain Filling Period in Barley (보리의 등숙기에 있어서 엽신과 망의 역할)

  • 류용환;이창덕
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.216-222
    • /
    • 1994
  • Experiments were conducted in the research field of the former Wheat and Barley Research with three barley cultivars, Olbori, kangbori and Suwon 18, which show different growth characteristics. Relationships between the degree of grain filling and the functions of photosynthetic organs in grain growth post-anthesis were investigated by removal treatment of awns and leaves, Stems and leaf sheath contributed to final grain weight invariably with cultivars by 79.2∼81.4%. while the contribution rate of awns and leaf blades varied by different cultivars, Awns contributed by 11.6∼13.8% in 'Olbori' and 'Kangbori', and 5.4% in 'Suwon 18', Contribution of leaf blades was 15.4% for 'Suwon 18', and 4.8∼8.1% for other cultivars, Of leaf blades upper ones showed a higher contribution rate, Early-maturing cultivars which maintain leaf greenness to the late phase of grain growth or awned cultivars were considered advantageous in grain filling.

  • PDF

Effects of Light Quality and Intensity on the Carbon Dioxide Exchange Rate, Growth, and Morphogenesis of Grafted Pepper Transplants during Healing and Acclimatization

  • Jang, Yoonah;Mun, Boheum;Seo, Taecheol;Lee, Jungu;Oh, Sangseok;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • This study evaluated the influence of light quality and intensity during healing and acclimatization on the $CO_2$ exchange rate, growth, and morphogenesis of grafted pepper (Capsicum annuum L.) transplants, using a system for the continuous measurement of the $CO_2$ exchange rate. C. annuum L. 'Nokkwang' and 'Tantan' were used as scions and rootstocks, respectively. Before grafting, the transplants were grown for four weeks in a growth chamber with artificial light, where the temperature was set at $25/18^{\circ}C$ (light/dark period) and the light period was 14 hours $d^{-1}$. The grafted pepper transplants were then healed and acclimatized under different light quality conditions using fluorescent lamps (control) and red, blue, and red + blue light-emitting diodes (LEDs). All the transplants were irradiated for 12 hours per day, for six days, at a photosynthetic photon flux (PPF) of 50, 100, or 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The higher PPF levels increased the $CO_2$ exchange rate during the healing and acclimatization. A smaller increase in the $CO_2$ exchange rates was observed in the transplants under red LEDs. At a PPF of 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the $CO_2$ exchange rate of the transplants irradiated with red LEDs was lowest and it was 37% lower than those irradiated with fluorescent lamps. The $CO_2$ exchange rates of transplants irradiated with blue LEDs was the highest and 20% higher than those irradiated under fluorescent lamps. The graft take was not affected by the light quality. The grafted pepper transplants irradiated with red LEDs had a lower SPAD value, leaf dry weight, and dry matter content. The transplants irradiated with blue LEDs had longer shoot length and heavier stem fresh weight than those irradiated with the other treatments. Leaves irradiated with the red LED had the smallest leaf area and showed leaf epinasty. In addition, the palisade and spongy cells of the pepper leaves were dysplastic and exhibited hyperplasia. Grafted pepper transplants treated with red + blue LEDs showed similar growth and morphology to those transplants irradiated with fluorescent lamps. These results suggest that high-quality grafted pepper transplants can be obtained by healing and acclimatization under a combination of blue and red lights at a high PPF level.

Effect of Root-zone Temperature and Ratios of $\textrm{NO}_3$-N to $\textrm{NH}_4$-N in the Nutrient Solution on the Growth and Yield of Hydroponically Grown Pepper Plant (근권온도와 양액중의 $\textrm{NO}_3$-N/$\textrm{NH}_4$-N 비율이 양액재배 고추의 생육ㆍ수량에 미치는 영향)

  • 정현복
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1995
  • This experiment was undertaken in order to clarify effect of NO$_3$-N/NH$_4$-N ratios(NO$_3$/NH$_4$ : 10:0, 8:2) in the nutrient solution on growth, yield, photosynthetic rate, relative concentration of chlorophyll and root activity of hydroponically grown pepper plants at three different root- zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$. Plant height, leaf number, stem diameter, fresh and dry weight of leaf and root were no effect in by three root- zone temperatures. However, leaf number, stem diameter, fresh and dry weight of leaf and stem, dry weight of root at 18$^{\circ}C$, 22$^{\circ}C$ and $25^{\circ}C$ increased when NH$_4$-N was added to the solution. Under root-Bone temperatures of 18$^{\circ}C$, 26$^{\circ}C$ condition, fruit length were longer by the addition of NH$_4$-N. Fruit number and yield increased by the addition of NH$_4$-N at three root-zone temperatures. Photosynthetic rate decreased as root - zone temperature increased. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, photosynthetic rate increased significantly by the addition of NH$_4$-N. Chlorophyll content of plants increased at 22$^{\circ}C$. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, chlorophyll content of plants increased by the addition of NH$_4$-N. Root activity of increased at 26$^{\circ}C$ Under root-Bone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, root activity increased by the addition of NH$_4$- N.

  • PDF

Annual $CO_2$ Uptake by Urban Popular Landscape Tree Species (도시 주요조경수종의 연간 $CO_2$흡수)

  • 조현길;조동하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.38-53
    • /
    • 1998
  • This study quantified annual net carbon uptake by urban landscape trees and provided equations to estimate it for Ginkgo biloba, platanus occidentalis, Zelkova serrata and Acer palmatum, based on measurement of exchange rate for two years growing seasons from Sep., 1995 to Aug., 1997. The carbon uptake was significantly influenced by photosynthetic capacity, photon flux density and pruning. Ginkgo biloba showed the highest rate of net CO\sub 2\ uptake per unit leaf area and Acer palmatum did the lowest rate among those species. A tree shaded by adjacent building over the growing seasons showed net CO\sub2\ uptake per unit leaf area much lower than another tree of the same species less shaded. Annual net carbon uptake per tree was 19kg for Zelkova serrata, but only 1 kg for Ginkgo biloba and Platanus occidentalis with crown volume dwarfed from pruning. One Zekoval serrata tree annually offset carbon emission from consumption of about 32 liter of gasoline or 83 kWh of electricity. Strategies to improve CO\sub 2\ uptake by urban landscape trees include planting of species with high potosynthetic capacity, sunlight-guaranteed road and building layout for street trees, planting of shade-tolerant species in the north of buildings, and relocation of utility lines to underground and minimized pruning.

  • PDF

Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano (NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Yoon, Kyeong Kyu;Lee, Hak bong;Song, Jae Mo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.