• Title/Summary/Keyword: Leaf lettuce

Search Result 311, Processing Time 0.032 seconds

Effect of CO2 Supply on Lettuce Growth

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.355-365
    • /
    • 2024
  • This study was conducted to investigate the effects of CO2 supplement on growth and quality in greenhouse lettuce cultivation. When CO2 was supplied at 1,500 ppm in lettuce cultivation, overall growth parameters such as number of leaves, leaf area, plant length, fresh weight, and dry weight were superior compared to those of the control group. While there was no significant difference in relative growth rate due to CO2 supplement, an increase in leaf area index was observed with CO2 usage. Furthermore, although there was no significant difference in the content of water-soluble vitamins such as Vitamin C, B1, B2, B5, and B6 due to CO2 supplement, the Vitamin B3 content in the CO2 treatment group was 0.5 mg/kg higher than in the control group. Therefore, the use of CO2 in lettuce cultivation resulted in increased yield and promoted growth, enabling early harvesting.

Effect of Light Emitting Diodes Treatment on Growth and Quality of Lettuce (Lactuca sativa L. 'Oak Leaf') (LED 처리가 상추의 생육 및 품질에 미치는 영향)

  • Shin, Yong-Seub;Lee, Mun-Jung;Lee, Eun-Sook;Ahn, Joon-Hyung;Kim, Min-Ki;Lee, Ji-Eun;Do, Han-Woo;Cheung, Joung-Do;Park, Jong-Uk;Um, Young-Ghul;Park, So-Deuk;Chae, Jang-Heui
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • The objective of this study was to elucidate the effect of light-emitting diode treatment on early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Oak Leaf'). In changes to leaf morphology, shoot elongation and hypocotyl length showed poor growth under red light irradiation, while red+blue light irradiation induced shorter plant height and more leaves, resulting in increased fresh weight. With respect to Hunter's color and SPAD values, lettuce seedlings grown under red+ blue and fluorescent light irradiation had a higher $a^*$ value but showed no other changes to SPAD values. Interestingly, redness in relative chlorophyll content was 1.4 times higher under red+blue light irradiation. Inorganic element (N, Ca, Mg, and Fe) and ascorbic acid concentrations increased in lettuce plants grown under LED light irradiation compared to those of lettuce grown under fluorescent light, which showed a higher P content. In conclusion, red+blue light irradiation, which stimulates growth and higher nutrient uptake in leaf lettuce, could be employed in containers equipped with LEDs.

Production of the taste-modifying protein, miraculin, in transgenic lettuce

  • Ezura, Hiroshi;Sun, Heyon-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.126-131
    • /
    • 2005
  • Richadella dulcifica, a native shrub in tropical West Africa, gives red berries that have the unusual property of modifying a sour taste into a sweet taste. The red berries contain a taste-modifying protein named miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. High expression of miraculin was obtained, with accumulation of up to 1% total soluble protein in lettuce leaf. In addition, the miraculin expressed in lettuce possesses a taste-modifying activity.

  • PDF

Discoloration Pattern of Lettuce Leaf Disks as Influenced by Sulfur Dioxide (아황산에 의한 상치 잎구조의 변색패턴)

  • 이미순
    • Journal of Plant Biology
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 1975
  • Development of a model system for mode of action studies of $SO_2$ was attempted with a plant tissue. Leaf disks, 1.0cm diameter, cut from the lamina of lettuce leaves, were floated on the testing medium and placed in light or dark condition to investigate the discoloration pattern with various sources of $SO_2$. Discoloration of leaf disks tended to be more serious with higher concentrations of $SO_2$ and on exposure to the light. Leaf disks were more severely discolored at lower pH with constant SO2 concentration. These discoloration patterns were highly reproducible and similar in all sources of $SO_2$. Spectrophotometric evidence suggested that light-mediated discoloration of leaf disks in the presence of $SO_2$ might occur mainly through chlorophyll ${\alpha}$ degradation.

  • PDF

Measurement of Dilution End-Points and Phytotoxicity of Toxic Metabolites Produced by Helminthosporium sativum in Barley, Wheat and Lettuce Roots (Helminthosporium sativum가 생성하는 독소물질에 대한 phytotoxicity 및 Dilution end-Points 측정 방법 개발)

  • Lee Sang. S.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.198-202
    • /
    • 1987
  • Toxic metabolites ('Toxins'), produced by Helminthosporium sativum causing leaf blotch in barley and root rot in barley and wheat were partially purified through C-18 column. The partially purified toxins appeared heat unstable and lipophilic. The responses of toxins to wheat and barley root corresponded with those to lettuce growth with the different concentrations. The determination of the concentration of toxins produced was developed using the dilution end-points. The equation [Y = a log X + b) was obtained from the semi-log­graphy with the linear analysis. The values 'a' and 'b' were discussed with the responses of several plants on the toxin produced by H. sativum.

  • PDF

Development of Automatic Lettuce Harvesting System for Plant Factory (식물 공장용 자동 상추 수확 시스템 개발)

  • 조성인;류관희;신동준;장성주
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.629-634
    • /
    • 1998
  • Factory-style plant production system aims to produce the standardized horticultural products with high quality and cleanness. In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automating technologies for harvesting, transporting and grading need to be developed. A lettuce harvesting system applicable to the plant factory was studied. It was composed of an articulated robot with a cutter and a gripper, lettuce feeding conveyor and air blower. Success rate of the developed system was 94.7 %. The system carried out harvesting a lettuce smoothly and the harvesting time was about 6 seconds per lettuce. The results showed a feasibility of robotic lettuce harvesting.

  • PDF

Quality Characteristics and Antioxidant Activities of the Organic Leaf and Stem Vegetables (유기농 엽경채류의 품질 특성 및 항산화 활성)

  • Chang, Min-Sun;Kim, Gun-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.3
    • /
    • pp.201-206
    • /
    • 2016
  • Consumers are more aware of their health and more conscious of environmental conditions nowadays. As such, there is an increasing demand for agri-foods obtained from organic agricultural practices. The present study aims to compare quality characteristics and antioxidant activities between organically and conventionally grown perilla leaf, leaf lettuce, broccoli, and cabbage. The conventionally grown leafy and stem vegetables showed significantly (p<0.05) higher weights and lengths. There was no significant difference in moisture contents of organically and conventionally grown vegetables. The L (lightness), a (redness), and b (yellowness) values of organically and conventionally grown perilla leaf, leaf lettuce, broccoli, and cabbage showed significant differences (p<0.05). Conventionally grown perilla leaf, leaf lettuce, and broccoli showed significantly (p<0.05) higher DPPH and ABTS radical scavenging activities. Overall, the quality characteristics of conventionally grown leafy and stem vegetables were higher than those of organically grown ones. On the other hand, antioxidant activities of organically grown leafy and stem vegetables were higher than those of conventionally grown ones. Further studies are recommended to evaluate other differences such as flavor, organic acid, polyphenol, vitamin, mineral, and bioactivity compounds between organically and conventionally grown vegetables.

Development of a Multiplex Polymerase Chain Reaction Assay for Detecting Five Previously Unreported Papaya Viruses for Quarantine Purposes in Korea

  • Miah Bae;Mi-Ri Park
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.304-311
    • /
    • 2024
  • There are concerns about the introduction and spread of plant pests and pathogens with globalization and climate change. As commercial control agents have not been developed for plant viruses, it is important to prevent virus spread. In this study, we developed a multiplex polymerase chain reaction (PCR) detection method to rapidly diagnose and control three DNA (papaya golden mosaic virus, Lindernia anagallis yellow vein virus, and melon chlorotic leaf curl virus) and two RNA (papaya leaf distortion mosaic virus and lettuce chlorosis virus) viruses that infect papaya. Specific primer sets were designed for the virus coat protein. Performing PCR, clear bands were observed with no non-specific reaction. Our multiplex PCR method can simultaneously detect small amounts of DNA/RNA to diagnose five viruses infecting papaya and prevent the spread of the virus.

Growth Characteristics of Lettuce under Low Pressure (저압조건에서 상추의 생육 특성)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2009
  • This study was conducted to analyze the feasibility of plant growth under low pressure and to investigate the effect of pressure on plant growth. Three levels of pressures (25, 50, and 101.3 kPa (control)) were provided to analyze the growth of Lettuce (Lactuca sativa L.) as affected by low pressure. Photoperiod, air temperature, and photosynthetic photon flux were set at 16/8 h, 26/$18^{\circ}C$, and $240{\mu}mol{\cdot}m^{-2}s^{-1}$, respectively. Growth characteristics of lettuce were measured on 7 days and 14 days after experiment. Leaf length, leaf width, leaf area, and root dry weight of lettuce measured on 7 days under 25 and 50 kPa were significant as compared to the control. Leaf length, top dry matter and root dry matter of lettuce measured on 14 days were significantly different under 25 and 50 kPa. From these results, we confirmed that lettuce could be grown under low pressure. However high relative humidity by evapotranspiration from leaves and growing beds under low pressure caused the condensation on the inner surface of the chamber. Therefore in a low pressure chamber, humidity control is required to maintain the relative humidity at a proper level.

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength (상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌)

  • Lee, Jae Su;Kim, Yong Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.330-339
    • /
    • 2014
  • Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.