• Title/Summary/Keyword: Leaf height

Search Result 1,301, Processing Time 0.03 seconds

Influence of Heavy Metal Contents in Soils Near Old Zinc-Mining Sites on the Growth of Corn (아연광산 인근 토양중의 중금속 함량이 옥수수 생육에 미치는 영향)

  • Lee, Jong-Pal;Park, No-Kwuan;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.241-250
    • /
    • 1994
  • This research was carried out to investigate how the growth of corn was affected by the heavy metal contents in soils near the old zinc-mining sites, by analyzing correlation between the growth of corn and heavy metal contents in soils collected from Yonghari Ilwoulmyun YongyangGun in Kyeongpook province in 1993. The results obtained were summarized as follows. 1. The contents of heavy metals such as Zn, Cu, Pb, Cd, and as in the Youngyang area were very high compared with those in a normal area. Heavy metal contents in soils collected from $2.0{\sim}2.5Km$ distance from the mining area were the highest, and those from 3.0 Km than those from 1.5 Km were even higher. 2. For heavy metal contents in leaves of all surveyed crops, Zn, Pb, Cu and As were the highest in soybean, followed by corn and rice. 3. Growth parameters of corn in polluted fields were comparatively poor and heavy metal contents in soils of the respective sites were higher than those in fields where rice was cultivated 8 years ago and irrigation was not done previously. 4. Heavy metal contents in the leaf part of corn plant showed a similar tendency to those in soils, being the highest among the different parts of corn plant, and they were in the decreasing order of Zn > Cu > As > Cd > Pb in each part. But the differences of metal contents in each part varied. 5. Generally, a negative relationship existed between the growth of corn and heavy metal contents in soil, of which Cu and Pb were significantly correlated with plant height, ear height, diameter of stem, ear length and yield of corn. 6. There existed a positive correlation between the contents of Pb,Cd and As in soils and those in the different parts of corn plant. The higher contents of Pb, Cd, and As in soil, the more those in corn plant incressed. The contents of Pb and As in corn grains showed a highly significant positive correlation with Cd and As contents in soils.

  • PDF

Evaluation of Bacillus subtilis Native Strains for Plant Growth Promotion and Induced Systemic Resistance in Tomato and Red-pepper (토마토, 고추의 생육촉진 및 병 저항성 의 농업적 활용을 위한 토착 Bacillus subtilis의 생물활성 평가)

  • Park, Jin-Woo;Jahaggirdar, Shamarao;Cho, Yung-Eun;Park, Kyoung-Soo;Lee, Seo-Hyun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Bacillus subtilis strains isolated from different regions of Korea were screened for their plant growth promotion and induced systemic resistance (ISR) in tomato and red-pepper. The plant growth promotion on red-pepper and tomato revealed maximum plant height (22.73 cm) on red pepper treated with B. subtilis strain JE 21-1 and 30.18cm in case of tomato treated with B. subtilis strain JE 8-1. There was also significant improvement in root and shoot dry weight in both the plants. The strain JE 21-1 showed better promise for all growth parameters in red-pepper and tomato when compared to other strains and positive check BTH. Different strains screened in square plate method also revealed maximum plant height and leaf width, and suppressed anthracnose on red pepper in case of strain JE 21-1 at $10^6$ and $10^7$ cells/ml when compared to other strains. In all the bacterial inoculations the population was significantly high when compared to untreated check. In plant growth promotion with respect to fruit length and weight, fruit length was maximal in treating with JE 9-4 and ES 2-2, while fruit weight was maximal in treating with JE 3-6, ES4-2, ES2-2 and JE 21-2 on red pepper. In case of tomato, comparatively better fruit weight was in JE 21-1, ES 3-3 and JE 10-2 when compared to BTH and untreated control. The soft rot disease caused by Pectobacterium carotovorum SCCI was completely suppressed in case of transgenic tobacco harboring GUS gene related to PR1a and increased the level of salicylic acid significantly in combined application of JE 9-4 on par with BTH. Thus, this study clarified some potential Bacillus subtilis strains for plant growth promotion and ISR in red-pepper and tomato.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Growth and Development of Cherry Tomato Seedlings Grown under Various Combined Ratios of Red to Blue LED Lights and Fruit Yield and Quality after Transplanting (다양한 조합의 적색과 청색 혼합 LED광에서 자란 방울 토마토 묘의 생육과 정식 후 수확량 및 품질)

  • Son, Ki-Ho;Kim, Eun-Young;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2018
  • Red and blue lights are effective wavelengths for photosynthesis in plants. In this study, we determined the effects of various combined ratios of red to blue LEDs on the quality of cherry tomato seedlings prior to transplantation, and their subsequent effects on the yield and quality of tomato fruits after transplanting. Two-week-old cherry tomato seedlings (Solanum lycopersicum cv. 'Cuty') were cultivated under various combined ratios of red (R; peak wavelength 655 nm) to blue (B; 456 nm) LEDs [red:blue = 41:59 (59B), 53:47 (47B), 65:35 (35B), 74:26 (26B), 87:13 (13B), or 100:0 (0B)] and fluorescent lamps and raised for 27 days. The cherry tomato seedlings were subsequently transplanted into a venlo-type greenhouse and cultivated for 75 days. At the seedling stage, the shoot fresh weight of seedlings in all RB combined treatments, except 0B and 59B, was higher than that of the control after 27 days of LED treatment. Shoot dry weight and leaf area also showed trends similar to that of shoot fresh weight. The stem length was significantly higher in 13B, 26B, and 35B treatments compared with the control and other treatments. In particular, the stem length of 26B plants was approximately 3.2 times longer than that of 59B plants. At 37 days after transplanting, the number of nodes was significantly higher in 26B and 47B plants, and the plant height of 26B plants was significantly higher than that of control and 59B plants. Total fruit yield in 26B plants, which was the highest, was approximately 1.6 and 1.8 times higher than that in control and 59B plants, respectively. Thus, the results of this study indicate that various combined ratios of red to blue LEDs directly affected to the growth of cherry tomato seedlings and may also affect parameters of reproductive growth such as fruit yield after transplantation.

Growth Promotion in Red Pepper and Tomato Seedlings by Fermented Liquid Fertilizers and Elution of Mineral Nutrients by Extraction Methods (발효액비별 고추와 토마토 육묘 생육 촉진 및 추출방법별 무기양분 용출)

  • Jang, Se Ji;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.130-141
    • /
    • 2020
  • The purpose of this study was to determine which fermented liquid fertilizer and application method yields the greatest amount of growth in red pepper (Capsicum annuum L.) and tomato (Lycopersicon esculentum MILL.) plants. Additionally, we investigated which extraction methods produce the most effective fertilizer with the highest levels of mineral nutrients. The liquid fertilizers used in this study were made from fish, bone and fish meal, red pepper leaves, and oil cake, and were extracted using fermentation or water and boiled water. In tomato plants, foliar-application of fermented fertilizer is known to promote more growth than application by drenching, regardless of the number of treatments (once or twice). In our studies, however, drenching with fertilizer promoted growth more effectively than foliar-application in red pepper plants. Studies in both tomato and red pepper have shown that the number of treatments does not significantly alter growth. Liquid fertilizers produced by a fermentation-extraction method promoted greater levels of growth in tomato compared to red pepper, and growth was greater when fertilizers were applied 20 (rather than 40) days post-sowing. Red pepper and tomato shoot fresh weight were affected more by fermented fertilizers than plant height 20 days post-sowing. In red pepper, we observed increased shoot fresh weight when using fermented liquid fertilizers with concentrations of 0.1% or greater. Tomato shoot fresh weight increased similarly in response to fermented fertilizer treatments at the same concentration levels, except those derived from fish. Fermented fish liquid fertilizer was only effective in increasing tomato shoot fresh weight in concentrations exceeding 1%. Red pepper and tomato shoot fresh weight also increased more than plant height in our studies using fermentation liquid fertilizers at 40 days after sowing. Red pepper fresh weight increased with application of bone + fish meal, red pepper leaf, and oil cake fertilizers at concentrations of 0.1%, but not with fish liquid fertilizer in concentrations under 0.5%. Shoot fresh weight in tomato increased with all liquid fertilizers. Growth in red pepper and tomato may be influenced by different kinds of fertilizers due to combinations of macro- and micro-nutrients, or specific macro-nutrients such as nitrogen, phosphoric acid, and potassium. The mineral nutrients found in fish, bone and fish meal, red pepper leaves, and oil cake were not easily extracted by fermentation; thus, liquid fertilizers made using water and boiled water methods more effectively promoted growth in red pepper and tomato due to the larger amounts of macronutrients eluted.

Effect of a Combined Treatment with Uniconazole, Silver Thiosulfate on Reduction of Ozone Injury in Tomato Plant (Uniconazole 과 Silver Thiosulfate 의 복합처리가 토마토의 오존피해경감에 미치는 효과)

  • Ku, Ja-Hyeong;Won, Dong-Chan;Kim, Tae-Il;Krizek, Donld T.;Mirecki, Roman M.
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 1992
  • Studies were conducted to determine the combined effect of uniconazole [(E) -1-(4-chlorophenyl)-4, 4-demethyl 2-(1,2,4 triazol-1-yl)-1-penten-3-ol] and silver thiosulfate $[Ag {(S_2O_3)}^3\;_2-]$ (STS) on reduction of ozone injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'). Plants were given a 50ml soil drench of uniconazole at concentrations of 0, 0.001, 0.01 and 0.1 mg/pot at the stage of emerging 4th leaf. Two days prior to ozone fumigation, STS solution contained 0.05% Tween-20 was also sprayed at concentrations of 0, 0.3 and 0.6 mM. Uniconazole at 0.01 mg/pot and STS at 0.6 mM were effective in providing protection against ozone exposure(20h at 0.2ppm) without severe retardation of plant height and chemical phytotoxicity, respectively. Combined treatment with uniconazole, STS significantly reduced ozone injury at the lower concentration than a single treatment with uniconazole or STS. Uniconazole treatment reduced plant height, stem elongation and transpiration rate on a whole plant level and increased chlorophyll concentration. STS did not give any effect on plant growth and chlorophyll content but increased transpiration rate in non-ozone-fumigated plants. Ethylene production in the leaves of ozone-fumigated plants was decreased by uniconazole and STS pretreatment, but there was no protective effect on epinasty of leaves in uniconazole-treated plants. STS increased ethylene production in non-ozone-fumigated plants, but it significantly reduced the degree of epinasty and defoliation of cotyledons when plants were exposed to ozone. Uniconazole slightly increased superoxide dismutase and peroxidase activities. But STS showed little or no effects on such free radical scavengers. Day of flowering after seeding was shortened and percentages of fruit set were increased by uniconazole treatment. STS was highly effective on protecting reduction of fruit set resulting from ozone fumigation. These results suggest that combined use of uniconazole and STS should provide miximum protection against ozone injury without growth retardation resulting in yield loss.

  • PDF

Effects of Split Nitrogen Application on Growth Characters, Yield Potential and Feed Value in Jeju Italian Millet (제주조의 질소분시 횟수에 따른 생육반응, 수량성 및 사료가치 변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Kil;Ko, Dong-Hwan;Cho, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • This study was conducted at a volcanic ash soil in the Experimental Farm of Cheju national university from May 1, 2000 to August 25, 2000 to determine the optimum frequency of split N application for. forage production of Jeju Italian millet(Setaria italica Beauvis). N .rate was applied with 200kg N/ha, and frequencies of the split application were 1. 2, 3, 4 and f times. Days to heading was 87 days in the N applied plot all at once, was delayed to 93 days at the five times split-applied plot. Plant height was the greatest (143cm) at the four times split-applied plot, but above o. below that was short. Leaf length, number of leaves and nodes were a similar tendency to plant height. SPAD(Soil Plant Analysis Development) reading values rose 34.3∼36.2 as N was split-applied from one to five times. Fresh forage, dry matter, crude Protein and TDN yield at the H split-applied to four times increased 33.08∼5l.50MT/ha, 9.94∼13.36MT/ha, 0.93∼1.70MT/ha and 5.06∼7.28MT/ha, respectively, but at the five tines split-applied plot decreased to 49.33MT/ha, 12.69MT/ha, 1.65MT/ha and 6.98 MT/ha, respectively. As the increasing of N split-applied. crude protein, crude fat NFE and TDN content increased 9.4∼13.0%, 1.5∼l.9%, 44.5∼45.5% and 50.9∼55.0%, respectively, whereas crude fiber and crude ash content decreased 35.3∼31.6% and 9.3∼8.3, respectively.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Comparative Analysis of Growth and Antioxidant Enzyme Activities from Two Chrysanthemum Varieties, 'ARTI-purple' and 'ARTI-queen' by Chronic Irradiation of Gamma-ray (감마선 완조사에 따른 국화 'ARTI-purple'과 'ARTI-queen'의 생육 및 항산화 효소 활성 비교 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Geun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Dong Sub
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2013
  • Two chrysanthemum varieties, 'ARTI-purple' and 'ARTI-queen', were chronically irradiated with doses of 30, 50, 70, and 100 Gy for four weeks in gamma-phytotron, a long term irradiation facility. We investigated the growth, responses of antioxidant enzymes (ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD; superoxidase dismutase, SOD) and malondialdehyde (MDA) contents under different doses of chronic-irradiation. The five plant growth measurements including plant height, number of leaves, internode length, stalk diameter and leaf thickness were investigated immediately after four week irradiation. The plant height (p<0.001), internode length (p<0.01), the number of leaves (p<0.001) and stalk diameter (p<0.05) were significantly decreased an increasing doses of gamma-ray. Among them, especially, the internode length was remarkably decreased showing the RD50 (Reduction Dose 50) at approximately 65 Gy. The antioxidant response after four weeks of recovery period, ascorbate peroxidase (APX) (p<0.01), superoxide dismutase (SOD) (p<0.01) and peroxidase (POD) (p<0.001) were significantly increased with an increasing dose of gamma-ray. And malondialdehyde (MDA) (p<0.01) contents showed the significant increase at the 70 and 100 Gy which means the oxidative stress was lasting for a considerable period. In this study, the 50 Gy irradiation as optimal dose showed higher growth than the $RD_{50}$, it also showed insignificant differences on the antioxidant responses and MDA contents. However, the 100 Gy dose showed lower growth than $RD_{50}$.