• Title/Summary/Keyword: Leaf growth rate

Search Result 1,094, Processing Time 0.025 seconds

Root and Top Growth of Panax ginseng at Various Soil Moisture Regime (토양수분 함량별 인삼의 근 및 지상부 생육)

  • 목성균;손석용;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.115-120
    • /
    • 1981
  • Effect of soil water on the growth of Panax ginseng(2 years old) was investigated through pot experiment. the results were as follows. 1. Optimum soil moisture content for root yield appeared to be 65.5% of field capacity(22.1% fresh weight basis) and at 31.5%(10.7% fresh weight basis) relative growth rate was nil. 2. Under suboptimum condition of soil moisture, emergence of shoot and leaf unfolding was delayed. The rate of emergence of shoot and leaf area was also decreased while missing shoot rate was increased. 3. Root yield was positively correlated with leaf area per plant(r=0.91 **), stem diameter (r=0.73**), stem length(r=0.71 **) fresh top yield(r=0.93**) and negatively with missing shoot rate(r=-0.77**). 4. Fresh root weight showed negative correlation(r=-0.80**) with water content of root indicating that tissue is more compact when grown at sufficient water.

  • PDF

Studies on the growth of Korea Lawn Grass (Zoysia japonica Steud.)in Reponse to Nitrogen Application, Clipping Treatment and Plant Density (질소시용, 예초 및 재식밀도가 한국잔디(Zoysia Japonica Steud)의 생육에 미치는 영향)

  • Sim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.61-113
    • /
    • 1987
  • The increasing emphasis placed on the production of fine turf for lawns, golf courses, parks, and other recreational sites has led to many unsolved problems as to how such turf could be best established and mainteined. For this purpose, a series of experiments were conducted under con ditions of pot and field. The results obtained were as follows EXPERIMENT I. The effect of nitrogen fertilizer and clipping interval on Zoysia japonica. 1. Increasing the rate of nitrogen and frequent clipping increased tiller number of Zoysis japonica and the maximum number of tillers were obtained from 700 kg N application and freqnent clippings (10 days interval ) in October. Treatment of 350kg N with 10 days clipping interval increased tillers much more than those of 700 kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kg N and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clipping plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700 kg N, however, top DM weight per tiller increased as the number of tillers increased consistently. 4. The highest top DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, differences in unders ( stolon + root ) DM weight occurred bynitrogen application were found between nil N and two applied nitrogen levels, whereas, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened. 7. By increasing fertilizer nitrogen rate applied, N content n the leaves and stems of Zoysiajaponica was increased. On the other hand, N content in root and stolon had little effect onfertilizer nitrogen, resulting in the lowest content among plant fractions. The largest content of N was recorded in leaves. Lengthening the clipping interval from 10 or 20 to 30 days tends to decrease the N content in the leaves and stems, whereas this trend did not appeared in stolon androot. 8. A positive correlations between N and K contents in tops and stolon were established andthus K content increased as N content in tops and stolon increased. Meanwhile, P content was not affected by N and clipping treatments. 9. Total soluble carbohydrate content in Zoysia japonica was largest in stolon and stem, and was reduced by increasing fertilizer nitrogen rate. Reduction in total soluble carbohydrate due to increased nitrogen rate was severer in the stolons and stems than in the leaves. 10. Increasing the rate of nitrogen applied increased the number of small and large vascular bundles in leaf blade, but shortened distance among the large vascular bundles. Shortening the clipping interval resulted in increase of the number of large vascular bundles but decrease ofdistance between large vascular bundles.EXPERIMENT II. Growth response of Zoysia japonica imposed by different plant densities. 1. Tiller numbers per unit area increased as plant density heightened. Differences in num ber between densities at higher densities than 120 D were of no significance. 2. Tiller numbers per clone attained by 110 days after transplanting were 126 at 40D,77 at 80D, 67 at 120D, 54 at 160D, and 41 at 200D. A decreasing trend of tiller numbers per clone with increasing density was noticable from 100 days after transplanting onwards. 3. During the growth period, the greatest number of green leaves per unit area were attainedin 90days after transplanting at 160D and 200D, and 100 days after transplanting at 40D, 80Dand 120D. Thus the period to reach the maximum green leaf number with the high plantdensity was likely to be earlier that with the low plant density. 4. Stolon growth up to 80 days after transplaning was relatively slow, but from 80 daysonwards, the growth quickened to range from 1.9 m/clone at 40D to 0.6m/clone at 200Din 200 days after transplanting, these followed by the stolon node produced. 5. Plant density did not affect stolon weight/clone and root weight/clone until 80 daysafter transplanting. 6. DM weight of root was heavier in the early period of growth than that of stolon, butthis trend was reversed in the late period of growth : DM weight of stolon was much higherthan that of root.EXPERIMENT Ill. Vegetative growth of Zoysia japonica and Zoysia matrella as affected by nitrogen and clipping height. 1. When no nitrogen was applied to Zoysia japonica, leaf blade which appeared during theAugust-early September period remained green for a perid of about 10 weeks and even leavesemerged in rate September lived for 42 days. However, leaf longevity did not exceed 8 weeks asnitrogen was applied. In contrast the leaf longevity of Zoysia matrella which emerged during the mid August-earlySeptember period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that thelife-spen of individual leaf of Zoysia matrella may be longer than that of Zoysia japorica. Clipping height had no effect on the leaf longevity in both grasses. 2. During the July-August period, tiller number, green leaf number and DM weightof Zoysia japonica were increased significantly with fertilizer nitrogen, but were not with twolevel of clipping height. This trend was reversed after late September ; no effect of nitrogen wasappeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Greenleaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. Among the stolons outgrown until early September, the primary stolon was not influencedby nitrogen and clipping treatments to produce only 2-3 stolons. However, 1st branch stoIon asaffected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolons. 4. Until early September, stolon length obtained at nil nitrogen level was chiefly caused bythe primary stolons. By applying nitrogen, the primary stolons of Zoysia japonica waslonger than 1st branch stolons when severe clipping was involved and in turn, shorter than 1stbranch stolons when lax clipping was concerned. In Zoysia matrella, 1st branch stolons were muchlonger than the primary stolon when turf was clipped severely but in conditions of lax clippingthere was little difference in length between primary and 1st branch stolons. 5. Stolon nodes of both Zoysia japonica and Z. matrella were positively influenced by nit rogen, but no particular increase by imposing clipping height treatment was marked in Zoysiamatrella. Although the stolon of Zoysia japonica grew until late October, the growthstimulated by nitrogen was not so remarkable as to exceed that by nil N.

  • PDF

Growth of Zoysiagrass (Zoysia japonica Steud.) as Affected by Prohexadione-calcium Application (한국잔디에 대한 Prohexadione-calcium의 생장 억제 효과)

  • Lim, Sang-Muk;Choi, Bong-Su;Woo, Sun-Hee;Lee, Chul-Won
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.199-204
    • /
    • 2011
  • This experiment was carried out to investigate the growth responses of zoysiagrass (Zoysia japonica Steud.) as affected by prohexadione-calcium foliar application for the effective labour saving and cost down management in the lawn yard, field and golf course etc. The leaf growth of zoysiagrass treated with prohexadione-calcium one day after mowing was significantly slow compared to the untreated plot. And the effect was continued up to 50 days. The growth inhibition rate at the treated plot was 46 to 50% compared to untreated plot and the leaf widths treated with prohexadione-calcium were narrower than control plot. The change of leaf dry weight 10 days after prohexadione-calcium treated was significantly shown less speedy than untrated plot and the results were continued up to 40 days after application. The SPAD values of the leaf colour were increased in the treated plots and continued for 40 days more.

Mycelial growth of oyster mushroom by substrates of water-hyacinth and banana leaf and stalk (부레옥잠과 바나나 잎, 줄기를 사용한 배지에서의 느타리버섯 균사생장)

  • Chang, Hyun-You;Lee, Sun-Een;Noh, Mun-Ki
    • Journal of Mushroom
    • /
    • v.7 no.2
    • /
    • pp.45-48
    • /
    • 2009
  • This research was carried out to clarify the feasibility of using the banana leaf and stalk and water hyacinth by substrate of oyster mushroom. The 100% cotton, water hyacinth, banana leaf and stalk was used as a mushroom media respectively. The growth of fungi was observed after 15 days and showed 115mm in the cottonseed hull, 80mm in the water hyacinth, and 72mm in the banana leaf and stalk. In the mixed substrate that added water hyacinth to cottonseed hull with the rate of 20, 50, 80% the growth was observed with 115, 103, 62mm respectively. In case of the banana mixed substrate the results was appeared with 106, 89, 78mm respectively. In the pure substrate the cottonseed hull's mycelial growth was the fastest and in the case of mixed substrate with water hyacinth 20% and cotton 80% was the fastest growth.

  • PDF

Effect of Forms and Levels of Nitrogen Fertilizer on Plant Growth and Essential Oil Content of Agastache rugosa

  • Ohk, Hyun-Choong;Song, Ji-Sook;Chae, Young-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • This study was carried out to investigate the effect of forms and levels of nitrogen fertilizer on plant growth and essential oil production of Agastache rugosa. Calcium nitrate had more influenced on length and width of leaves and lateral branch length than did urea. When nitrogen fertilizer level was increased from 12 kgN/I0a to 24kgN/I0a, plant growth was stimulated and dry matter of leaf and inflorescence were increased. Top dry matter of plant with calcium nitrate treatment (38.4 g) was heavier than that of urea treatment (32.8 g). Interactions among accession and nitrogen form and nitrogen rate were not significantly different for top dry matter. The forms and rate of nitrogen fertilizer did not affect estragole content. The estragole contents was higher in leaf (91.8%) than that of inflorescence (81.3%). While the essential oil content was not affected by different nitrogen forms, nitrogen level affected the essential oil contents positively by increasing dry matter. Essential oil yield was not affected by accession or nitrogen form, but by nitrogen rate. With increasing N application from 12kgN/I0a to 24 kgN/I0a, essential oil yield was increased by 95.8 %.

  • PDF

Effect of Organic Fertilizer Application depends on Soil Depths on the Growth of Spiraea bumalda 'Gold Mound' in a Extensive Green Roof System (조방형 옥상녹화에서 노랑조팝나무의 활착에 미치는 토심별 유기질 토양개량제의 시용 효과)

  • Ju, Jin-Hee;Gu, Eun-Pyung;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.239-248
    • /
    • 2014
  • This study investigated the effects of soil depths and soil organic fertilizer application on the growth characteristics of Spiraea bumalda 'Gold Mound' in a extensive green roof system. The treatments were 3 soil depths (10, 15 and 25 cm) and 5 soil types in mixture of artificial soil and organic fertilizer. We measured plant height, leaf width, leaf length, number of flowers, visual quality and survival rate from March to October in 2011. The growing medium of 10 cm soil depth showed the highest plant growth in $A_1$ (amended soil 100%), and the lowest plant growth in $O_1A_4$ (organic fertilizer 20% + amended soil 80%) treatment. In case of 15 cm soil depth, Spiraea bumalda 'Gold Mound' showed a high leaf length and visual quality in $O_1A_2$(organic fertilizer 33% + amended soil 67%) treatment and high leaf width and number of flowers in $O_1$ (organic fertilizer 100%) treatment. $A_1$ treatment without organic fertilizer showed the lowest leaf length and poorest visual quality, and $O_1A_4$ treatment showed the lowest plant height and lowest number of flowers. At soil depth 25 cm, $O_1A_1$ (organic fertilizer 50% + amended soil 50%) treatment showed greater plant height, visual quality and number of flowers than other treatments. The leaf length and leaf width were more effective in $O_1$ treatment. $A_1$ treatment showed a relatively low leaf length, leaf width and visual quality. The higher the organic conditioner, the better the plant growth. And, survival rates of Spiraea bumalda 'Gold Mound' showed 92%, 88% and 76% at soil depths of 25 cm, 15 cm and 10 cm, respectively, in this a extensive green roof system. Therefore, the results showed that the growth of Spiraea bumalda 'Gold Mound' was affected by both soil quality and soil depth. Different optimal mixtures of organic fertilizer and amended soil were determined, depending upon soil depth.

Effect of Rice Straw Compost on Cadmium Transfer and Metal-ions Distribution at Different Growth Stages of Soybean

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.644-650
    • /
    • 2016
  • In soil-to-plant transfer of heavy metals, the amount absorbed and accumulated varies depending on the environment conditions. The absorption rate of cadmium (Cd) in plants differs considerably depending on the bioavailability of Cd in the soil, while usage by various organic matters is also reported to affect absorption patterns. Therefore, this study aimed to identify the difference in the transfer of essential metal ions and Cd to various plant parts when rice straw compost was used to cultivate soybean (Glycine max L. cv. Daepung). In the two-leaf stage of soybean cultivated in a greenhouse, Cd was mixed in the soil, after which the Cd and essential metal ions contents, and physiological changes of soybean seedlings were studied on the 15th and 25th day. The Cd toxicity in the plant was reduced with the use of rice straw compost. Further, the Cd content varied with the plant part, and was higher in young leaves (3rd and 4th leaf) than in the stem. When analyzed by leaf age, the Cd transfer was highest in young leaves (3rd and 4th leaf), followed by mature leaves (1st and 2nd leaf). While there was no significant difference between plant tissues in the absorption rate of copper (Cu) and zinc (Zn) when rice straw compost was used against Cd toxicity, the absorption rate of manganese (Mn) and iron (Fe) showed a significant decline in both the control and rice straw compost treatment conditions, as well as a significant difference between leaf ages. Therefore, these results confirm that the use of rice straw compost against Cd toxicity is effective, and implies that the rate of Cd transfer in the soybean plant varies significantly with leaf age.

The Effect Estimation of Heavy Metals on the Microbial Activity during Leaf Litter Decomposition (낙엽분해동안 미생물 활성에 미치는 중금속의 영향 추정)

  • Shim, Jae-Kuk;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2011
  • This study was to find out influence of heavy metal concentration in plant on microbial activities during decomposition of Artenmisia princeps var. orientalis and Equisetum arvense collected from an abandoned mine and control site in Cheongyang-gun Chungcheongnam-do. Microbial respiration rate showed the highest value at the time of the first collection, and then tended to decline over time. The highest microbial respiration rate appeared in leaf litters with low heavy metal contents, and A. princeps var. orientalis and E. arvense collected and decomposed at the control site showed the fastest decomposition rate. For both A. princeps var. orientalis and E. arvense, litters with low heavy metal content appeared to have higher microbial biomass. There was apparent quantitative correlation between decomposition rate and cumulative respiration rate of leaf litters, and between decomposition rate and microbial biomass of leaf litters. Thus, the study result showed that leaf litter with higher heavy metal content had a negative impacts on the growth and activity of microbial decomposer during decomposition processes.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.