• Title/Summary/Keyword: Leaf N content

Search Result 391, Processing Time 0.037 seconds

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.

Comparison of Lines from Anther and Maternally-derived dihaploids, Single-seed Descent and Bulk Breeding Method in Flue-cured Tobacco (Nicotiana tabacum L.) (연초(Nicotiana tabacum L.)의 반수체 육종법 1주1계통법, 집단육종에 의한 육성계통의 특성비교)

  • 정윤화;이승철;김달웅
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.104-115
    • /
    • 1992
  • The present study was conducted to compare the relative efficiency of four different breeding methods in tobacco varietal development. A single Fl hybrid plant from cross of two flue-cured cultivars of Nicotiana tabacum L Bright Yellow 4(BY4) and NC95, was selfed. F2population above cross was screened for resistance against bacterial wilt caused by Pseudommonas solanacearum E.F.Smith under the naturally infested field conditions, and the 30 lines were developed from F2 individual plant by anther culture (ADH), maternal method utilizing Nicotiana afpicana (MDH), single- seed descent(SSD) and Bulk breeding method, respectively. All characters except content of total alkaloids of ADH and MDH which wore bred by haploid methods reduced more than that of lines bred by conventional methods(SSD & Bulk) : however, the yields were 8% lower than other lines. The total alkaloid content of ADH was higher than that of MDH, and yield was reduced about 4n even though the number of leaf was identical with the MDH. All other characters of ADH were also reduced significantly. In the lines bred by conventional methods, population developed by SSD showed significantly wider leaf width, shorter plant height, later days to flower, and lower in percent reducing sugar than those by Bulk. The populations derived from haploid method showed greater phenotypic variance and wider range of variation than conventionally developed ones. The results obtained indicate that selection will provide a significantly greater genetic gain for leaf number and leaf length in the ADU and MDH populations, and for plant height and days to flower in the SSD and Bulk populations.

  • PDF

Effect of Controlled Release Fertilizer on the Growth and Flowering of Oncidium 'Sweet Sugar' (완효성비료 시비가 온시디움 생육과 개화에 미치는 영향)

  • Kim, Si Dong;Lee, Hee Doo;Kim, Ju Hyoung;Kim, Tae Jung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.246-250
    • /
    • 2009
  • This study was conducted to determine the effect of controlled-release fertilizer on growth of Oncidium. Leaf and pseudobulb length increased with controlled-release fertilizer from 2 g to 3 g treatment compared to hyponex and controlled-release fertilizer I g treatment, while leaf width and number of leaf was not significant among treatments. Plant weight increased with controlled-release fertilizer from 2 g to 3 g treatment compared to hyponex and controlled-release fertilizer I g treatment. Flowering date(bloomed October early) did not show significant difference among treatments. The number of flowers showed the most in controlled-release fertilizer 3 g treatment as 62.4 ea/plant, but was not different significantly among treatments. Flower stem length and width were also non-significant among treatments. Branching numbers increased in the controlled-release fertilizer 2 g and 3 g treatments. Mineral elements of shoot increased from 2 g to 3 g treatment rather than the controlled-release fertilizer 1g treatment. Especially, K content was higher compared to N and P content. Therefore, appropriate controlled-release fertilizer amount for Oncidium was recommended as 2 g.

Studies on the Effects of Ozone Gas in Paddy Rice;1. Effects of Ozone Gas on Growth Stage of Rice (수도생육(水稻生育)에 대(對)한 Ozone 가스의 영향(影響)에 관(關)한 연구(硏究);1. Ozone 가스에 대(對)한 수도생육시기별(水稻生育時期別) 영향(影響))

  • Kim, Bok-Young;Cho, Jae-Kyu;Park, Young-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.2
    • /
    • pp.123-128
    • /
    • 1982
  • This study was carried out to investigate the effect of ozone gas on paddy rice at the different growth stage. Seokwang variety of rice plant was exposed to 0.5 ppm ozone gas for 4 hours at rooting, maximum tillering, ear formation and heading stages. after ozone gas fumigation, damage symptom, percentage of destroyed leaf, chlorophyll content and peroxidase activity of rice plant were observed. The results obtained are as follows. 1) Typical symptom of ozone gas damage appeared greyish or reddish brown subtle spots within rice leaf vein. 2) Yield loss by ozone gas exposure at different growth stage was in the order of maximum tillering stage>rooting stage>ear formation stage>heading stage. 3) Chlorophyll damage and leaf destruction was the highest at maximum tillering stage, while damage of leaf and chlorophyll were not found at heading stage. 4) The damage by ozone gas fumigation was higher at the growth stage with higher N content in plant, and N content was decreased after ozone gas exposure.

  • PDF

Effect of Wollastonite and Nitrogen Application on the Growth of Rice Plant (퇴화염토에서 수도생육에 대한 질소와 규회석의 시용효과)

  • 김규진;이주열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.279-286
    • /
    • 1981
  • This study was conducted to find out the effect of wollastonite application in degraded saline soil condition on the growth of japonica rice variety. The variety, Palgweng was tested with 4 levels of wollastonite (200, 400, 600 and 400/200 kg/l0a) and two nitrogen levels (12 and 16 kg/l0a). The effect of wollastonite was higher in 16 than 12 kg of nitrogen application. The wollastonite application reduced rice leaf blast and dead left at lower nodal position, and increased percentage of effective tillers, percentage of ripened grains and 1, 000 grain weight. The SiO$_2$ content of upper leaf was higher than lower leaf in 200 kg of wollastonite application, but there was no difference under high wollastonite application (400 kg/l0a). Highly significant positive correlationships were obtained between SiO_2 content of plant at heading and percentage of ripened grains, (r=0.613) and SiO_2 content of flag leaf and percentage of ripened grains (r=0.407). Wollastonite application did not affect the development and degeneration of primary and secondary rachis branches of panicles, but it increased the number of spikelets. The highest grain yield was obtained with 16 kg of nitrogen and 600 kg of wollastonite.

  • PDF

The Role of $Ca^{2+}$ in Retardation Effects of Benzyladenine on the Senescence of Wheat (Triticum aestivum L.) Leaves

  • Hong, Kee-Jong;Jin, Chang-Duck;Hong, Young-Nam
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.113-121
    • /
    • 1996
  • The role of Ca2+ on benzyladenine (BA)-induced senescence retardation in mature wheat (Triticum aestivum L.) primary leaves was investigated. When an extracellular calcium chelator, ethylene glycol-bis-($\beta$-aminoethylether)-N, N'-tetraacetic acid (EGTA) together with BA, was applied to senescing leaves for 4 days of dark incubation, the content of chlorophyll and soluble protein decreased rapidly. And, the content of malondialdehyde (MDA), known to be a degradation product of membrane lipids, increased compared with the BA alone control. The BA-EGTA combination also caused the stimulation of protease and RNase activity and a rapid loss of catalase activity owing to the decling of BA effects. In the case of treatment with only intracellular calcium antagonist 3, 4, 5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) without the BA addition, the chlorophyll content at day 4 after dark incubation decreased in paralled with the increasing concentration of the antagonist. In addition, the chlorophyll content at 10-5 M calcium ionophore A23187 treatment in the absence of BA was similar to that of the BA alone treatment. These results suggest that calcium may mediate the retardation effect of BA on leaf senescence by acting as a second messenger and that the calcium input from cell organelles, as well as the calcium inflow from intercellular spaces and cell walls, may be involved in modulating cytosolic calcium levels related to BA action.

  • PDF

Effect of Root-zone Temperature and Ratios of $\textrm{NO}_3$-N to $\textrm{NH}_4$-N in the Nutrient Solution on the Growth and Yield of Hydroponically Grown Pepper Plant (근권온도와 양액중의 $\textrm{NO}_3$-N/$\textrm{NH}_4$-N 비율이 양액재배 고추의 생육ㆍ수량에 미치는 영향)

  • 정현복
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1995
  • This experiment was undertaken in order to clarify effect of NO$_3$-N/NH$_4$-N ratios(NO$_3$/NH$_4$ : 10:0, 8:2) in the nutrient solution on growth, yield, photosynthetic rate, relative concentration of chlorophyll and root activity of hydroponically grown pepper plants at three different root- zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$. Plant height, leaf number, stem diameter, fresh and dry weight of leaf and root were no effect in by three root- zone temperatures. However, leaf number, stem diameter, fresh and dry weight of leaf and stem, dry weight of root at 18$^{\circ}C$, 22$^{\circ}C$ and $25^{\circ}C$ increased when NH$_4$-N was added to the solution. Under root-Bone temperatures of 18$^{\circ}C$, 26$^{\circ}C$ condition, fruit length were longer by the addition of NH$_4$-N. Fruit number and yield increased by the addition of NH$_4$-N at three root-zone temperatures. Photosynthetic rate decreased as root - zone temperature increased. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, photosynthetic rate increased significantly by the addition of NH$_4$-N. Chlorophyll content of plants increased at 22$^{\circ}C$. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, chlorophyll content of plants increased by the addition of NH$_4$-N. Root activity of increased at 26$^{\circ}C$ Under root-Bone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, root activity increased by the addition of NH$_4$- N.

  • PDF

Effect of Light Emitting Diodes Treatment on Growth and Quality of Lettuce (Lactuca sativa L. 'Oak Leaf') (LED 처리가 상추의 생육 및 품질에 미치는 영향)

  • Shin, Yong-Seub;Lee, Mun-Jung;Lee, Eun-Sook;Ahn, Joon-Hyung;Kim, Min-Ki;Lee, Ji-Eun;Do, Han-Woo;Cheung, Joung-Do;Park, Jong-Uk;Um, Young-Ghul;Park, So-Deuk;Chae, Jang-Heui
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • The objective of this study was to elucidate the effect of light-emitting diode treatment on early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Oak Leaf'). In changes to leaf morphology, shoot elongation and hypocotyl length showed poor growth under red light irradiation, while red+blue light irradiation induced shorter plant height and more leaves, resulting in increased fresh weight. With respect to Hunter's color and SPAD values, lettuce seedlings grown under red+ blue and fluorescent light irradiation had a higher $a^*$ value but showed no other changes to SPAD values. Interestingly, redness in relative chlorophyll content was 1.4 times higher under red+blue light irradiation. Inorganic element (N, Ca, Mg, and Fe) and ascorbic acid concentrations increased in lettuce plants grown under LED light irradiation compared to those of lettuce grown under fluorescent light, which showed a higher P content. In conclusion, red+blue light irradiation, which stimulates growth and higher nutrient uptake in leaf lettuce, could be employed in containers equipped with LEDs.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Determination of the Optimal Nitrogen Concentration in Pre-planting Fertilizers for the Cultivation of Tomato Plug Seedlings

  • Lee, Dong Hoon;Park, Myong Sun;Lee, Chiwon W.;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2017
  • This study investigated the effect of pre-planting nitrogen (N) fertilization levels added to a soilless root medium on the growth of 'Dotaerang Dia' tomato seedlings. The N levels were varied for a total of 7 treatments: 0, 100, 250, 500, 750, 1,000, or $1,500mg{\cdot}L^{-1}$. The pH of the root media gradually rose in all treatments as the seedlings grew; however, the differences in the pH were not significant among the treatments. The electrical conductivity (EC) of the root media was significantly different among the treatments from sowing to week three, then drastically decreased after week four, which diminished the differences in the EC among the treatments. At week six, plant height, leaf length, leaf width, number of leaves, and fresh and dry weights of the shoot were highest for the treatment with $500mg{\cdot}L^{-1}N$. In contrast, the treatment with $1,500mg{\cdot}L^{-1}N$ had the lowest results for all growth measurements. The fresh weight was 67% heavier in the $500mg{\cdot}L^{-1}N$ treatment compared to the $1,500mg{\cdot}L^{-1}N$ treatment. The total N content in the tissues was lowest in the treatment with $0mg{\cdot}L^{-1}N$ and highest in the treatment with $1,000mg{\cdot}L^{-1}N$. The contents of calcium (Ca), magnesium (Mg), and metal micronutrients in the tissues were highest in the $250mg{\cdot}L^{-1}N$ treatment. A previous study demonstrated that adjusting the fertilization level to promote growth to over 90% of the maximum growth is a good strategy for lowering production costs and preventing damage due to excessive fertilizer absorption by crops. Our results indicated that the optimal pre-planting N fertilization level for tomato plug seedlings should be lower than $500mg{\cdot}L^{-1}$ and the optimum tissue N contents should be around 3.21% to 4.60%.