This paper is the sixth report about the fungal diseases of economic resource plants observed newly in Korea. It contains short descriptions on symptoms, occurrence conditions, pathogens, and some phytopathological notes for each of 10 fungal plant diseases. They are identified as circular leaf spot of Ligustrum ovalifolium by Cercospora adusta, leaf spot of Viola spp. by c. violae, leaf spot of Trifolium repens by C. zebrina, hypophyllous leaf sot of Angelica gigas by Passalora depressa, brown leaf spot of Euonymus japonicus by Pseudocercospora destructiva, brown leaf spot of Lonicera japonica by P. lonicericola, brown leaf spot of Parthenocissus tricuspidata by P. vitis, black spot of Echinops latifolius by Ramularia cynarae, leaf spot of Petasites japonicus by R. major, and leaf spot of Plantagoasiactica by R. plantaginis, respectively.
This paper is a third report about the new fungal diseases of economic resource plants in Korea. It contains short descriptions on symptoms, occurrence conditions, pathogen, and some phytopathological notes for each of 10 fungal plant diseases. They are angular leaf spot of Achyranthes japonica by Cercospora achyranthis causing leaf spot and defoliation in the shade of plants, leaf spot of Armoracia lapathifolia by Cercospora armoraciae causing leaf spot to blight from the rainy season to autumn, hypophyllous mold of Dioscorea tokoro by Distocercospora pachyderma causing leaf spot and yellowing, hypophyllous mold of Artemisia spp.by Mycovellosiella ferruginea causing leaf spot and yellowing, angular leaf spot of Aralia elata by Pseudocercospora araliae causing velvety leaf spot and defoliation, hypophyllous mold of Lycium chinense by Pseudocercospora chengtuensis causing velvety leaf spot and defoliation from the rainy season to autumn, angular leaf spot of Diospyros lotus by Pseudocercospora disospyri-morrisianae causing leaf spot and defoliation from summer to autumn, brown leaf spot of Impatiens textori by Pseudocercospora nojimae causing leaf spot to blight from the rainy season, leaf spot of Cephalonoplos segetum by Ramularia cirsii causing leaf spot to blight throughout the growing season, and white mold of Leonurus sibiricus by Ramularia leonuri causing leaf spot to blight mostly in autumn.
Occurrence of diseases in economic resource plants in Korea is poorly known. This paper reports short descriptions on symptom, occurrence condition, pathogen, and some phytopathological notes for each 10 fungal plant diseases new to Korea; leaf spot of Rosa multiflora with Seimatosporium discosioides causing leaf spot and defoliation, leaf blight of Equisetum arvense with Titaeospora equiseti causing leaf spot to leaf blight, leaf blight of Setaria viridis with Phyrenochaeta setariae causing leaf spot of Aster tataricus with Septoria astericola causing leaf spot and black spot, powdery mildew of Clematis fusca var. coreana with Erysiphe ranunculi causing powdery mildew and dwarfing, powder mildew of Ligularia stenocephala with Erysiphe galeopsidis causing powdery mildew and dwarfing, powdery mildew of Phlox subulata with Erysiphe cichoracearum causing powdery mildew and defoliation tar spot of Lonicera japonica with Rhytisma lonicericola causing tar spot and dwarfing, white rust of Pharbitis nil with Albugo ipomoeae-pandulatae causing white rust and deformation, and white rust of Achyranthes japonica with Albugo achyranthis causing white rust and defoliation.
우리나라에서 재배되고 있는 키위나무 잎에는 궤양병과 세균성점무늬병처럼 세균에 의한 병과 잿빛곰팡이병, 흰가루병, 과실곰보병을 비롯하여 여러 가지 형태 점무늬병 등 곰팡이에 의한 병이 발생하여 피해를 주고 있다. 이 총설에서는 키위나무잎에 발생하는 피해를 주는 주요 병에 대하여 병징과 발생특성을 요약하고 지난 30년간 수행한 연구 업적과 현장 경험 그리고 세계적인 주요 연구 산물들을 기초로 하여 키위나무 잎에 발생하는 주요 병에 의한 피해를 경감할 수 있도록 농가에서 실용적으로 사용할 수 있는 방제방법을 제시하고자 한다.
본 논문에서는 스마트팜 시스템에서 재배 중인 식물 잎의 질병을 검출하고, 질병 유형을 분류하는 방법을 제안한다. 영상으로부터식물 잎의 컬러 정보와 질병 유형의 형태 정보를 다층 퍼셉트론(MLP) 모델을 이용하여 학습한다. 1단계에서는 입력된 영상의 컬러분포를 분석하여 질병 존재 여부를 판단한다. 1단계의 질병 존재 가능성이 높은 영상에 대하여 2단계에서는 Mean shift clustering을 이용하여 작은 영역으로 분할하고, 각 분할된 영역 단위로 컬러 정보를 추출하여 제안한 Color Network에 의하여 질병 여부를 판별한다. 컬러 분할된 영역이 Color Network에 의하여 질병으로 판별되면, 3단계에서는 그 영역의 형태 정보를 추출하여 제안한 Shape Network를 이용하여 질병의 유형을 분류한다. 사과나무 잎과 서양 양상추(Iceberg)에서 발생하는 두 가지 대분류 유형의 질병에 대하여, 제안한 기법은 작은 영역 단위로는 92.3%의 잎 질병 검출률을 보였으며, 보통 2개 이상의 질병 영역이 존재하는 한 장의 영상 단위로는 99.3% 이상의 검출률을 보였다. 본 논문에서 제안한 방법은 스마트팜 환경에서 잎 식물의 질병 여부를 조기에 발견할 수 있으며, 대상 식물에 따른 추가 학습 없이 다양한 식물과 질병 유형으로 확대 적용이 가능하다.
International Journal of Computer Science & Network Security
/
제23권6호
/
pp.115-120
/
2023
Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.107-112
/
2024
Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.
Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.
International Journal of Industrial Entomology and Biomaterials
/
제12권1호
/
pp.35-39
/
2006
Fifty-six indigenous and twenty nine exotic mulberry varieties were screened against powdery mildew, Myrothecium leaf spot, Pseudocercospora leaf spot, sooty mold and bacterial leaf spot for a period of three years under field condition. The percent disease index (PDI) was recorded during peak season of the foliar diseases. Out of eighty-five varieties studied, ten varieties were highly resistant and eight were resistant to powdery mildew; six varieties were immune and seventy-eight varieties were highly resistant to Myrothecium leaf spot; sixty varieties were highly resistant and 21 were resistant to Pseudocercospora leaf spot; forty four varieties were highly resistant to sooty mold and two varieties were immune and fifty-eight were highly resistant to bacterial leaf spot. Lowest cumulatative disease index was observed in M. multicaulis (7.28) followed by Thailand lobed (7.85) and Italian mulberry (8.06).
This paper is the fifth report about the fungal diseases of economic resource plants observed newly in Korea. It contains short descriptions on symptoms, occurrence conditions, pathogens, and some phytopathological notes for each of 10 fungal plant diseases. They are identified as leaf spot of Adenophora triphylla var. japonica by Septoria lengyelii, leaf spot of Calystegia soldanella by S. convolvuli, leaf spot of Campanula punctata by S. campanulae, leaf spot of Codonopsis lanceolata by S. codonopsidis, leaf spot of Geum japonicum by s. gei, black spot of Oenanthe javanica by s. oenanthes, leaf spot of Oenothera odorata by S. oenotherae, angular leaf spot of Rehmannia glutinosa by S. digitalis, brown spot of Rubus crataegifolius by s. rubi, and leaf spot of Viola verecunda by S. violae-palustris, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.